共查询到20条相似文献,搜索用时 15 毫秒
1.
Catherine M. Phillips Louisa Goumidi Sandrine Bertrais Martyn R. Field L. Adrienne Cupples Jose M. Ordovas Jolene McMonagle Catherine Defoort Julie A. Lovegrove Christian A. Drevon Ellen E. Blaak Beata Kiec-Wilk Ulf Riserus Jose Lopez-Miranda Ross McManus Serge Hercberg Denis Lairon Richard Planells Helen M. Roche 《Journal of lipid research》2010,51(12):3500-3507
Acetyl-CoA carboxylase β (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort. In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions. 相似文献
2.
3.
Phosphatidylinositol (PI) is essential for numerous cell functions and is generated by consecutive reactions catalyzed by CDP-diacylglycerol synthase (CDS) and PI synthase. In this study, we investigated the membrane organization of CDP-diacylglycerol synthesis. Separation of mildly disrupted A431 cell membranes on sucrose density gradients revealed cofractionation of CDS and PI synthase activities with cholesterol-poor, endoplasmic reticulum (ER) membranes and partial overlap with plasma membrane caveolae. Cofractionation of CDS activity with caveolae was also observed when low-buoyant density caveolin-enriched membranes were prepared using a carbonate-based method. However, immunoisolation studies determined that CDS activity localized to ER membrane fragments containing calnexin and type III inositol (1,4,5)-trisphosphate receptors but not to caveolae. Membrane fragmentation in neutral pH buffer established that CDP-diacylglycerol and PI syntheses were restricted to a subfraction of the calnexin-positive ER. In contrast to lipid rafts enriched for caveolin, cholesterol, and GM1 glycosphingolipids, the CDS-containing ER membranes were detergent soluble. In cell imaging studies, CDS and calnexin colocalized in microdomain-sized patches of the ER and also unexpectedly at the plasma membrane. These results demonstrate that key components of the PI pathway localize to nonraft, phospholipid-synthesizing microdomains of the ER that are also enriched for calnexin. 相似文献
4.
Julianne Beam Amy Botta Jiayu Ye Hesham Soliman Brieanne J. Matier Mary Forrest Kathleen M. MacLeod Sanjoy Ghosh 《The Journal of biological chemistry》2015,290(38):23371-23384
Controversy exists on the benefits versus harms of n-6 polyunsaturated fatty acids (n-6 PUFA). Although n-6 PUFA demonstrates anti-atherosclerotic properties, survival following cardiac remodeling may be compromised. We hypothesized that n-6 PUFA like linoleic acid (LA) or other downstream PUFAs like γ-linolenic acid or arachidonic acid alter the transforming growth factor-β (TGFβ)-collagen axis in the heart. Excess dietary LA increased the collagen I/III ratio in the mouse myocardium, leading to cardiac “stiffening” characterized by impaired transmitral flow indicative of early diastolic dysfunction within 5 weeks. In vitro, LA under TGFβ1 stimulation increased collagen I and lysyl oxidase (LOX), the enzyme that cross-links soluble collagen resulting in deposited collagen. Overexpression of fatty acid desaturase 2 (fads2), which metabolizes LA to downstream PUFAs, reduced collagen deposits, LOX maturation, and activity with LA, whereas overexpressing fads1, unrelated to LA desaturation, did not. Furthermore, fads2 knockdown by RNAi elevated LOX activity and collagen deposits in fibroblasts with LA but not oleic acid, implying a buildup of LA for aggravating such pro-fibrotic effects. As direct incubation with γ-linolenic acid or arachidonic acid also attenuated collagen deposits and LOX activity, we concluded that LA itself, independent of other downstream PUFAs, promotes the pro-fibrotic effects of n-6 PUFA. Overall, these results attempt to reconcile opposing views of n-6 PUFA on the cardiovascular system and present evidence supporting a cardiac muscle-specific effect of n-6 PUFAs. Therefore, aggravation of the collagen I/III ratio and cardiac stiffening by excess n-6 PUFA represent a novel pathway of cardiac lipotoxicity caused by high n-6 PUFA diets. 相似文献
5.
6.
Yan‐Lin Wang Wen Guo Yan Zang Gordon C. Yaney Gino Vallega Lisa Getty‐Kaushik Paul Pilch Konstantin Kandror Barbara E. Corkey 《Obesity (Silver Spring, Md.)》2004,12(11):1781-1788
Objective: Long‐chain acyl coenzyme A synthetase (ACSL) converts free fatty acids (FFAs) into their metabolizable long‐chain acyl coenzyme A (LC‐CoA) derivatives that are essential for FFA conversion to CO2, triglycerides, or complex lipids. ACSL‐1 is highly expressed in adipose tissue with broad substrate specificity. We tested the hypothesis that ACSL localization, and resulting local generation of LC‐CoA, regulates FFA partitioning. Research Methods and Procedures: These studies used cell fractionation of rat adipocytes to measure ACSL activity and mass and compared cells from young, mature, fed, fasted, and diabetic rats. Functional studies included measurement of FFA oxidation, complex lipid synthesis, and LC‐CoA levels. Results: High ACSL specific activity was expressed in the mitochondria/nuclei (M/N), high‐density microsomes (HDM), low‐density microsomes (LDM), and plasma membrane (PM) fractions. We show here that, during fasting, total FFA oxidation increased, and, although total ACSL activity decreased, a greater percentage of activity (43 ± 1.5%) was associated with the M/N fraction than in the fed state (23 ± 0.3%). In the fed state, more ACSL activity (34 ± 0.5%) was associated with the HDM than in the fasted state (25 ± 0.9%), concurrent with increased triglyceride formation from FFA. Insulin increased LC‐CoA and ACSL activity associated with the PM. The changes in ACSL activity in response to insulin were associated with only minor changes in mass as determined by Western blotting. Discussion: It is hypothesized that ACSL plays an important role in targeting FFA to specific metabolic pathways or acylation sites in the cell, thus acting as an important control mechanism in fuel partitioning. Localization of ACSL at the PM may serve to decrease FFA efflux and trap FFA within the cell as LC‐CoA. 相似文献
7.
8.
9.
Coppen SR Kaba RA Halliday D Dupont E Skepper JN Elneil S Severs NJ 《Molecular and cellular biochemistry》2003,248(1-2):121-127
The VLDL (very low density lipoprotein) receptor is a member of the LDL (low density lipoprotein) receptor family. The VLDL receptor binds apolipoprotein (apo) E but not apo B, and is expressed in fatty acid active tissues (heart, muscle, adipose) and macrophages abundantly. Lipoprotein lipase (LPL) modulates the binding of triglyceride (TG)-rich lipoprotein particles to the VLDL receptor. By the unique ligand specificity, VLDL receptor practically appeared to function as IDL (intermediate density lipoprotein) and chylomicron remnant receptor in peripheral tissues in concert with LPL. In contrast to LDL receptor, the VLDL receptor expression is not down regulated by lipoproteins. Recently several possible functions of the VLDL receptor have been reported in lipoprotein metabolism, atherosclerosis, obesity/insulin resistance, cardiac fatty acid metabolism and neuronal migration. The gene therapy of VLDL receptor into the LDL receptor knockout mice liver showed a benefit effect for lipoprotein metabolism and atherosclerosis. Further researches about the VLDL receptor function will be needed in the future. 相似文献
10.
J. Mark Brown Jenna L. Betters Caleb Lord Yinyan Ma Xianlin Han Kui Yang Heather M. Alger John Melchior Janet Sawyer Ramesh Shah Martha D. Wilson Xiuli Liu Mark J. Graham Richard Lee Rosanne Crooke Gerald I. Shulman Bingzhong Xue Hang Shi Liqing Yu 《Journal of lipid research》2010,51(11):3306-3315
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80–95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance. 相似文献
11.
Cynthia Palmieri-Thiers Stéphane Canaan Virginie Brunini Vannina Lorenzi Félix Tomi Jean-Luc Desseyn Ulrike Garscha Ernst H. Oliw Liliane Berti Jacques Maury 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(5):339-346
Plant lipoxygenases (LOXs) are a class of widespread dioxygenases catalysing the hydroperoxidation of polyunsaturated fatty acids. Although multiple isoforms of LOX have been detected in a wide range of plants, their physiological roles remain to be clarified. With the aim to clarify the occurrence of LOXs in olives and their contribution to the elaboration of the olive oil aroma, we cloned and characterized the first cDNA of the LOX isoform which is expressed during olive development. The open reading frame encodes a polypeptide of 864 amino acids. This olive LOX is a type-1 LOX which shows a high degree of identity at the peptide level towards hazelnut (77.3%), tobacco (76.3%) and almond (75.5%) LOXs. The recombinant enzyme shows a dual positional specificity, as it forms both 9- and 13-hydroperoxide of linoleic acid in a 2:1 ratio, and would be defined as 9/13-LOX. Although a LOX activity was detected throughout the olive development, the 9/13-LOX is mainly expressed at late developmental stages. Our data suggest that there are at least two Lox genes expressed in black olives, and that the 9/13-LOX is associated with the ripening and senescence processes. However, due to its dual positional specificity and its expression pattern, its contribution to the elaboration of the olive oil aroma might be considered. 相似文献
12.
Fenofibrate reverses changes induced by high‐fat diet on metabolism in mice muscle and visceral adipocytes
下载免费PDF全文

Flávia de T. Frias Karina C.e. Rocha Mariana de Mendonça Gilson M. Murata Hygor N. Araujo Luís G.O. de Sousa Érica de Sousa Sandro M. Hirabara Nayara de C. Leite Everardo M. Carneiro Rui Curi Leonardo R. Silveira Alice C. Rodrigues 《Journal of cellular physiology》2018,233(4):3515-3528
13.
14.
Magnusson-Olsson AL Hamark B Ericsson A Wennergren M Jansson T Powell TL 《Journal of lipid research》2006,47(11):2551-2561
The fetal demand for FFA increases as gestation proceeds, and LPL represents one potential mechanism for increasing placental lipid transport. We examined LPL activity and protein expression in first trimester and term human placenta. The LPL activity was 3-fold higher in term (n = 7; P < 0.05) compared with first trimester (n = 6) placentas. The LPL expression appeared lower in microvillous membrane from first trimester (n = 2) compared with term (n = 2) placentas. We incubated isolated placental villous fragments with a variety of effectors [GW 1929, estradiol, insulin, cortisol, epinephrine, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-alpha] for 1, 3, and 24 h to investigate potential regulatory mechanisms. Decreased LPL activity was observed after 24 h of incubation with estradiol (1 micro g/ml), insulin, cortisol, and IGF-1 (n = 12; P < 0.05). We observed an increase in LPL activity after 3 h of incubation with estradiol (20 ng/ml) or hyperglycemic medium plus insulin (n = 7; P < 0.05). To conclude, we suggest that the gestational increase in placental LPL activity represents an important mechanism to enhance placental FFA transport in late pregnancy. Hormonal regulation of placental LPL activity by insulin, cortisol, IGF-1, and estradiol may be involved in gestational changes and in alterations in LPL activity in pregnancies complicated by altered fetal growth. 相似文献
15.
Yongliang Wang Huan Liu Ruixin Zhang Yuyao Xiang Junfeng Lu Bo Xia Liang Peng Jiangwei Wu 《The Journal of biological chemistry》2022,298(3)
Increasing evidence has shown that AdipoRon, a synthetic adiponectin receptor agonist, is involved in the regulation of whole-body insulin sensitivity and energy homeostasis. However, the mechanisms underlying these alterations remain unclear. Here, using hyperinsulinemic–euglycemic clamp and isotopic tracing techniques, we show that short-term (10 days) AdipoRon administration indirectly inhibits lipolysis in white adipose tissue via increasing circulating levels of fibroblast growth factor 21 in mice fed a high-fat diet. This led to reduced plasma-free fatty acid concentrations and improved lipid-induced whole-body insulin resistance. In contrast, we found that long-term (20 days) AdipoRon administration directly exacerbated white adipose tissue lipolysis, increased hepatic gluconeogenesis, and impaired the tricarboxylic acid cycle in the skeletal muscle, resulting in aggravated whole-body insulin resistance. Together, these data provide new insights into the comprehensive understanding of multifaceted functional complexity of AdipoRon. 相似文献
16.
Jinyan Nan Ji Seon Lee Seung-Ah Lee Dong-Sup Lee Kyong Soo Park Sung Soo Chung 《Molecules and cells》2021,44(9):637
Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders. 相似文献
17.
18.
Perveen Z Ando H Ueno A Ito Y Yamamoto Y Yamada Y Takagi T Kaneko T Kogame K Okuyama H 《Biotechnology letters》2006,28(3):197-202
A thraustochytrid-like microorganism (strain 12B) was isolated from the mangrove area of Okinawa, Japan. On the basis of its
ectoplasmic net structure and biflagellate zoospores we determined strain 12B to be a novel member of the phylum Labyrinthulomycota
in the kingdom Protoctista. When grown on glucose/seawater at 28 °C, it had a lipid content of 58% with docosahexaenoic acid
(DHA; 22:6 n−3) at 43% of the total fatty acids. It had a growth rate of 0.38 h−1. The DHA production rate of 2.8 ± 0.7 g l−1 day−1 is the highest value reported for any microorganism.
Received 7 October 2005; Revisions requested 7 October 2005; Revisions received 15 November 2005; Accepted 15 November 2005 相似文献
19.
The microbiota actively and extensively participates in the regulation of human metabolism, playing a crucial role in the development of metabolic diseases. Helicobacter pylori (H. pylori), when colonizing gastric epithelial cells, not only induces local tissue inflammation or malignant transformation but also leads to systemic and partial changes in host metabolism. These shifts can be mediated through direct contact, toxic components, or indirect immune responses. Consequently, they influence various molecular metabolic events that impact nutritional status and iron absorption in the host. Unraveling the intricate and diverse molecular interaction links between H. pylori and human metabolism modulation is essential for understanding pathogenesis mechanisms and developing targeted treatments for related diseases. However, significant challenges persist in comprehensively understanding the complex association networks among H. pylori itself, the infected host's status, the host microbiome, and the immune response. Previous metabolomics research has indicated that H. pylori infection and eradication may selectively shape the metabolite and microbial profiles of gastric lesions. Yet, it remains largely unknown how these diverse metabolic pathways, including isovaleric acid, cholesterol, fatty acids, and phospholipids, specifically modulate gastric carcinogenesis or affect the host's serum metabolism, consequently leading to the development of metabolic-associated diseases. The direct contribution of H. pylori to metabolisms still lacks conclusive evidence. In this review, we summarize recent advances in clinical evidence highlighting associations between chronic H. pylori infection and metabolic diseases, as well as its potential molecular regulatory patterns. 相似文献
20.
日粮中的n-3PUFA具有多种作用,除了调节质膜组成和影响细胞信号之外,同时还涉及多 种与脂代谢有关酶与蛋白的基因表达,如:PPARα、SREBPs、LXR等,通过它们来影响靶基因(如: ACO-A、FAS等)的表达,从而起到调控脂肪沉积的作用。 相似文献