首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voorhees JL  Rao GV  Gordon TJ  Brooks CL 《FEBS letters》2011,585(12):1783-1788
Zinc half sites are present in all human lactogenic hormones: human prolactin (hPRL), growth hormone (hGH), placental lactogens (hPL) and the hPRL receptor (hPRLr). The influence of divalent zinc (Zn(2+)) as measured by intrinsic fluorescence or FRET in each of these hormones is unique and is affected by the presence of varying stoichiometries of hPRLr. These data show that both Zn(2+) and hPRLr binding influence hPRL conformers in an interdependent fashion. Although each of these three lactogenic hormones bind hPRLr and induce a biological response that is sensitive to the presence of increasing concentrations of Zn(2+), each hormone is unique in the mechanistic details of this process.  相似文献   

2.
Mechanism for ordered receptor binding by human prolactin   总被引:2,自引:0,他引:2  
Sivaprasad U  Canfield JM  Brooks CL 《Biochemistry》2004,43(43):13755-13765
Prolactin, a lactogenic hormone, binds to two prolactin receptors sequentially, the first receptor binding at site 1 of the hormone followed by the second receptor binding at site 2. We have investigated the mechanism by which human prolactin (hPRL) binds the extracellular domain of the human prolactin receptor (hPRLbp) using surface plasmon resonance (SPR) technology. We have covalently coupled hPRL to the SPR chip surface via coupling chemistries that reside in and block either site 1 or site 2. Equilibrium binding experiments using saturating hPRLbp concentrations show that site 2 receptor binding is dependent on site 1 receptor occupancy. In contrast, site 1 binding is independent of site 2 occupancy. Thus, sites 1 and 2 are functionally coupled, site 1 binding inducing the functional organization of site 2. Site 2 of hPRL does not have a measurable binding affinity prior to hPRLbp binding at site 1. After site 1 receptor binding, site 2 affinity is increased to values approaching that of site 1. Corruption of either site 1 or site 2 by mutagenesis is consistent with a functional coupling of sites 1 and 2. Fluorescence resonance energy transfer (FRET) experiments indicate that receptor binding at site 1 induces a conformation change in the hormone. These data support an "induced-fit" model for prolactin receptor binding where binding of the first receptor to hPRL induces a conformation change in the hormone creating the second receptor-binding site.  相似文献   

3.
Rao GV  Brooks CL 《Biochemistry》2011,50(8):1347-1358
Human prolactin (hPRL) binds two human prolactin receptor molecules, creating active heterotrimeric complexes. Receptors bind dissimilar hormone surfaces termed site 1 and site 2 in an obligate ordered process. We sought to map the functional epitopes in site 1 of hPRL. Extensive alanine mutagenesis (102 of the 199 residues) showed approximately 40% of these mutant hPRLs changed the ΔG for site 1 receptor binding. Six of these residues are within 3.5 ? of the receptor and form the site 1 functional epitopes. We identified a set of noncovalent interactions between these six residues and the receptor. We identified a second group of site 1 residues that are between 3.5 and 5 ? from the receptor where alanine mutations reduced the affinity. This second group has noncovalent interactions with other hormone residues and stabilized the topology of the functional epitopes by linking these to the body of the protein. Finally, we identified a third group of residues that are outside site 1 (>5 ?) and extend to site 2 and whose mutation to alanine significantly weakened receptor binding at site 1 of prolactin. These three groups of residues form a contiguous structural motif between sites 1 and 2 of human prolactin and may constitute structural features that functionally couple sites 1 and 2. This work identifies the residues that form the functional epitopes for site 1 of human prolactin and also identifies a set of residues that support the concept that sites 1 and 2 are functionally coupled by an allosteric mechanism.  相似文献   

4.
The seven histidines of bovine prolactin were modified with ethoxyformic anhydride and two classes of reactivity were apparent: 5 histidines were in the more reactive class (k = 0.097 min-1) and 2 histidines were less reactive (k = 0.011 min-1). The activity of the modified prolactins was determined by measuring their ability to bind to prolactin receptors from rabbit mammary glands. This assay showed that prolactin was fully active when 0 to 5 histidines were modified. If all 7 residues were modified, the hormone was unable to bind to its receptor. Circular dichroism studies indicated no significant differences in conformation for prolactins which had 2 to 7 histidines modified. Modification of human growth hormone and human placental lactogen with ethoxyformic anhydride resulted in a loss of the ability of these lactogenic hormones to bind to the prolactin receptor. For all three hormones, essentially full activity was recovered when the modifying group was removed by treatment with hydroxylamine. Sequence comparisons indicate that only 2 of the 3 growth hormone histidines and 2 of 7 placental lactogen histidines were homologous with histidines in bovine prolactin and that, in each case, they correspond to His-27 and His-30 in bovine prolactin. It is postulated that these residues serve to identify a portion of the binding domain of bovine prolactin.  相似文献   

5.
K M Duda  C L Brooks 《FEBS letters》1999,449(2-3):120-124
Comparison of crystallographic structures of human growth hormone, either bound to the prolactin receptor or free of receptors, reveals that human growth hormone binding to the prolactin receptor at site 1 is associated with a structural change in human growth hormone that influences the organization of residues which constitute site 2. We have identified Tyr164 as a residue that is critical for the propagation of this structural rearrangement. Tyr164 is a structural epitope for site 1 and is distal to site 2. Mutation of Tyr164 to glutamic acid (Y164E) does not affect the somatotrophic activity, absorption or fluorescence spectra or binding to the human prolactin receptor when compared to wild-type human growth hormone, indicating the subtle effects of the mutation. Lactogenic assays using extended concentrations of Y164E human growth hormone produce dose-response curves that are characterized by a right-shifted agonist phase and an unchanged antagonist phase when compared to wild-type human growth hormone. These results indicate that Tyr164 is required for the lactogenic activity of human growth hormone and that mutation to glutamic acid disrupts the lactogenic function of site 2.  相似文献   

6.
Prolactin has a wide range of actions, including osmoregulation and the control of mammary gland development and lactation. These effects are mediated through a high-affinity cell surface receptor, which has been well characterized in a number of animal tissues. The molecular characteristics of the human receptor are unknown, however. The present studies were initiated, therefore, to determine the binding and molecular characteristics of the lactogenic receptor of human placental chorion membranes. Subcellular fractionation studies showed that the bulk of the receptor sedimented in the microsomal fraction at 45,000gav. Endogenous ligand was dissociated from the receptor with 3.5 M MgCl2 or 0.05 M acetate buffer (pH 4.8) with preservation of binding activity. The microsomal receptor bound human growth hormone (hGH), human prolactin (hPRL), ovine prolactin (oPRL), and human placental lactogen (hPL) but not non-primate growth hormones, indicating a narrow specificity for lactogenic hormones. The binding was only partially reversible in agreement with the known binding kinetics of animal lactogenic receptors. The receptor was solubilized with 45% yield from the microsomes using 16 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulphonate (CHAPS) detergent-250 mM NaCl, and the binding activity was fully restored by a two-fold dilution in the binding reaction to reveal a KD of 0.8 nM for hGH and a binding capacity of 200 fmol of specifically bound hGH per mg of microsomal protein. Gel filtration chromatography indicated the minimum molecular weight of the ligand-receptor complex was approximately 60,000 daltons, and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of covalently cross-linked 125I-hGH-receptor complexes revealed a molecular size of 58,000 daltons. When account was taken of the contribution of the ligand, a molecular weight of 36,000 for the receptor's binding domain was obtained. These data indicate that the chorion lactogenic receptor has very similar binding and molecular characteristics to the lactogenic receptors from other mammalian species. Chorion membranes are thus a convenient source of material for the further purification and characterization of the human lactogenic receptor.  相似文献   

7.
The secondary structure of seven hormones of the prolactin family was predicted by two known prediction algorithms with the following averaging of the results for the whole homologous group of proteins. It was shown that the mentioned hormones are related to the alpha-helical type of protein molecules. The comparative analysis of the prolactin family and the kindred growth hormone family has been carried out on different levels of their structural organization. A conclusion is drawn, that despite the significant differences in the primary structures and small differences in the secondary structures, the three-dimensional structure for the prolactin molecules and the growth hormone are very similar and repeat in the same way the packing of alpha-helices. The study of the relationship of the prolactin structure and function has been carried out. The regions of the amino acid sequence, able to form prolactin antigenic sites and conditionally incorporated into two highly specific spatial groups were revealed. The region of the primary structure 80-137 determining lactogenic and proliferational function of the molecule and forming the alpha-hairpin in the tertiary structure has been discovered. The structural particuliarity of one of the binding sites of prolactin and human growth hormone with lactogenic receptor was reveal. An explanation for the absence of lactogenic activity in all kinds of growth hormones except human ones has been proposed.  相似文献   

8.
Two antisense peptides were synthesized to a sense peptide corresponding to amino acid residues 23-35 of ovine prolactin. Both of the antisense peptides formed a saturable complex with the sense peptide and ovine prolactin. The sense peptide inhibited the interaction of ovine prolactin with the antisense peptides. Both of the antisense peptides have a common core sequence VMNV which can bind to ovine prolactin. The lactogenic hormones, rat prolactin and human growth hormone, compete with the binding of ovine prolactin to an antisense peptide whereas a nonlactogen, ovine growth hormone, does not compete indicating a degree of specificity in the interaction.  相似文献   

9.
Lactogenic receptors were analysed with the use of the cross-linking agent disuccinimidyl suberate to attach covalently 125I-labelled ovine prolactin or human growth hormone to binding sites from (1) liver from pregnant rats and (2) the rat-derived Nb2 lymphoma cell line. Analysis by SDS/polyacrylamide-gel electrophoresis of the proteins cross-linked to labelled hormone in rat liver indicated a major specifically-labelled complex with an Mr of 68,000-72,000, when run under reducing or non-reducing conditions. With Nb2 cells a major specifically-labelled complex with an Mr of 97,000-110,000 was identified, but only when electrophoresis was run using reducing conditions. Assuming one hormone molecule (Mr 22,000-24,000) per hormone-receptor complex, then the receptor proteins have an Mr of 44,000-50,000 for rat liver and 73,000-88,000 for the Nb2 cells. For both cell types the receptors were of lactogenic specificity; lactogenic hormones competed for binding whereas somatogenic hormones did not. These studies suggest that the lactogenic receptors in rat liver membranes and Nb2 cells differ in two respects. Firstly, the Mr of the labelled receptor protein in Nb2 cells is greater than that of the corresponding receptor protein in rat liver membranes; secondly, the Nb2 cell receptor appears to exist as a disulphide-linked oligomer whereas the receptor in rat liver membranes does not.  相似文献   

10.
The alpha-amino group of ovine prolactin (oPRL) and human growth hormone (hGH) was selectively modified by transamination with glyoxylic acid. No difference was found in the binding capacity of transaminated oPRL to rat liver lactogenic receptors with respect to its control, although both samples showed a decrease in its binding capacity with reference to the native hormone. This decrease was due to conformational changes caused by the reaction conditions and not by the transamination itself, as shown by the circular dichroism spectra. Transaminated hGH retained the full binding capacity of the hormone. These results suggest that the alpha-amino group is not relevant for the binding to lactogenic liver receptors in both lactogenic hormones.  相似文献   

11.
A highly sensitive radioreceptor assay (RRA) for human prolactin (hPRL) based on membrane preparations obtained from chemically induced rat mammary tumour is described. The binding of 125I-labelled, highly purified pituitary human prolactin was specific for lactogenic hormones and depending on time, temperature, and concentration of receptor protein. Optimal specific receptor binding (18-20%) was obtained by incubation at 21 degrees C for 18 h. The prolactin receptor was shown to have a single "class" of binding sites with an affinity constant (Ka) of 6.0 X 10(10) mol-1. The binding capacity was 8-33 fmol/mg membrane protein. The sensitivity of the radioreceptor assay was 0.5 ng/ml ovine prolactin (NIH-PS-10) or 0.84 ng/ml human prolactin (NIH-VLS-4). The receptor binding activity of various purified prolactin preparations from different species was comparable to the biological hormone activities, indicating that this in vitro assay system measures values which are biologically relevant.  相似文献   

12.
Human growth hormone (hGH) binds lactogenic or somatotrophic receptors, creating active heterotrimeric complexes. Comparison of hGH structures, either free or bound to a single lactogenic or somatotrophic receptor, shows binding is associated with structural changes. Changes in hGH structure are unique when binding either lactogenic or somatotrophic receptors and they influence the spatial arrangement of residues constituting the second receptor-binding site. Using site-directed mutagenesis, we identified a contiguous set of largely hydrophobic residues that forms a motif communicating between the two receptor-binding sites of hGH. The residues are external to the receptor-binding epitopes and were identified when their mutation reduced site 2 function without changing site 1 function. The motif includes Phe44, Leu93, Tyr160, Leu163, and Tyr164, located in two hydrophobic clusters between the receptor-binding sites. Their mutation to Glu disrupts hydrophobic interactions and reduces lactogenic activity between 4.7- and 85-fold with little effect on somatotrophic activity or spectroscopic properties. These differential effects indicate that loss of lactogenic activity is not a result of global mis-folding. We propose the loss of lactogenic activity results from disruption of specific hydrophobic clusters that disables the site 1 binding-induced structuring of the second receptor-binding site.  相似文献   

13.
14.
The distribution of 125I radioactivity in the liver, kidneys, adrenals and serum of male rats was measured 10 minutes after an intravenous bolus of 125I-labelled human growth hormone (hGH) was administered in the presence or absence of a large excess of ovine growth hormone or ovine prolactin. The hGH binding sites in the adrenals had displacement properties characteristic of lactogenic receptors, whereas those in the liver had displacement properties characteristic of somatogenic receptors. Bovine and ovine adrenal microsomal membrane fractions contained high affinity (Ka = 1.4-3.3 nM-1) binding sites for hGH which showed ligand specificity typical of lactogenic receptors. It is concluded that the hGH binding site in the adrenal gland is a classical lactogenic receptor and that this tissue is a convenient and rich (42.6 +/- 6.4 fmol hGH specifically bound/mg protein) source of receptor suitable for further characterization.  相似文献   

15.
16.
The standard Nb2 assay for biologically active prolactin has been modified to allow a rapid convenient microbioassay without loss of specificity or accuracy. Lactogenic hormones specifically stimulate the replication of Nb2 node rat lymphoma cells in suspension culture and form the basis of a currently available bioassay to measure prolactin and growth hormone in human serum. A new microbioassay was developed using microtest plates enabling a large number of samples to be assayed simultaneously whilst maintaining the overall sensitivity of the bioassay for lactogenic hormones. Growth of the Nb2 node lymphoma cells, measured by a light scattering technique using optical density on a spectrophotometer, was shown to be closely correlated with the cell number determined on a Coulter counter. Addition of excess anti-human prolactin and anti-human growth hormone completely inhibited the growth stimulatory effects of both human prolactin and human growth hormone. This new microbioassay (BA) and conventional radioimmunoassay (RIA) were used to measure lactogenic hormones in 48 normal subjects. There was a close correlation between the results of both assays for each hormone studied in the control sera. The mean basal BA/RIA ratio was 1.5 (range 0.8-2.0) for prolactin, 0.7 (range 0-4.5) for growth hormone and 1.3 (range 0.5-1.9) for total lactogenic activity.  相似文献   

17.
Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.  相似文献   

18.
The binding of 125I-labeled human growth hormone (hGH) to liver membranes from several different species was studied to determine the lactogenic or somatotropic hormone nature of the receptors. Liver membranes from several species of the class of Mammalia bound significant quantities of 125I-hGH. Goat, sheep, rat, mouse, and rabbit liver membranes exhibited the highest binding with cow, pig, human, and hamster liver membranes exhibiting severalfold less binding. The binding of the dog and cat liver membranes exhibited relatively high nonspecific binding. Fish and chicken liver membranes did not bind appreciable quantities of 125I-hGH. In all species except for dog and cat in which 125I-hGH bound to the membranes, hGH was the most effective competitor for binding. The mean ID50 for hGH and all membranes was 2.4 X 10(-9) M. Human liver membranes exhibited the smallest ID50, 4.9 X 10(-10) M. In sheep liver membranes, bovine growth hormone (bGH) was equipotent to hGH in competing for 125I-hGH binding. bGH also demonstrated significant competition for 125I-hGH binding in pig and cow membranes. Ovine prolactin (oPrl) exhibited significant competition for 125I-hGH only in rodent membranes. The ID50 for oPrl was 3- to 10-fold greater than for hGH in the rat, hamster, and mouse liver membranes. The ID50 for oPrl in the sheep liver membranes was 13-fold greater than that of hGH. We conclude the following: (1) There appears to be a species specificity of hGH binding that may be phylogenetically significant and may result from variations in the structure of the hormone or the receptor. (2) The competitive binding properties of hGH are fairly consistent within phylogenetic orders. (3) The simple designation of lactogenic or somatotropic for hormones and receptors is insufficient to characterize the binding properties of this group of hormones.  相似文献   

19.
The binding of 125I-labelled human somatotropin (growth hormone) to a crude membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction by Triton X-100, was dependent on time, temperature and receptor concentration. At 4 degrees C a steady state was reached after 20 h, and maximum specific binding (as a percentage of total tracer added) was approx. 50% for both membrane-bound and solubilized receptors. Solubilization did not significantly affect the binding properties of the receptor at low concentrations of Triton X-100 (less than 0.05%, v/v, in the assay tube). However, at higher concentrations (approx. 0.1%, v/v), the detergent lowered the ability of some hormones, for example ovine prolactin, to displace 125I-labelled human somatotropin, but did not affect other hormones such as bovine somatotropin. Some somatogenic hormones, such as bovine somatotropin, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled human somatotropin from membrane-bound and solubilized receptor preparations. Furthermore, 85% of 125I-labelled bovine somatotropin was displaced from membrane-bound receptors by ovine prolactin, and 125I-labelled ovine prolactin was almost completely displaced by bovine somatotropin. Scatchard analysis of the binding data for human somatotropin suggested a single class of binding sites in the membrane-bound receptor preparation, with an affinity (Ka) of 1.9 X 10(9) M-1 and a capacity of 1726 fmol/mg of protein; these values were slightly increased by solubilization (Ka = 3.2 X 10(9) M-1, capacity = 2103 fmol/mg of protein). Scatchard analysis of binding to membrane-bound receptors also indicated a single class of high-affinity binding sites for bovine somatotropin (Ka = 4.8 X 10(9) M-1, capacity = 769 fmol/mg) and for ovine prolactin (Ka = 6.1 X 10(9) M-1, capacity = 187 fmol/mg).  相似文献   

20.
The pituitary hormone prolactin (prl) is implicated in a number of biological functions, especially lactation, which is mediated through specific lactogenic receptors (PrlR). Human growth hormone (hGH) is also a pituitary hormone responsible for linear growth. While the growth hormone receptor (hGHR) binds only hGH, hPrlR can interact with both hGH and hPrl. Using structural information from the human growth hormone (hGH)/receptor (hGHR) complex, we modeled by homology a complex between rabbit prolactin hormone (rbPrl) and its receptor (rbPrlR). While the somatogenic hormone/somatogenic receptor (hGH/hGHR) and somatogenic hormone/lactogenic receptor (hGH/hPrlR) interactions are now known and well studied, here we propose a model for the interaction of the lactogenic hormone with its receptor (rbPrl/rbPrlR), and compare these three kinds of ligand/receptor interaction. We identified residues contributing to the active site and tested the potential dimerization of the receptor. Biochemical studies and information deduced from the modeled complex do not exclude a homodimeric form but point to a functional heterodimeric complex. Proteins 27: 459–468, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号