首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ostreococcus is a marine picophytoeukaryote for which culture studies indicate there are ‘high-light'' and ‘low-light'' adapted ecotypes. Representatives of these ecotypes fall within two to three 18S ribosomal DNA (rDNA) clades for the former and one for the latter. However, clade distributions and relationships to this form of niche partitioning are unknown in nature. We developed two quantitative PCR primer-probe sets and enumerated the proposed ecotypes in the Pacific Ocean as well as the subtropical and tropical North Atlantic. Statistical differences in factors such as salinity, temperature and NO3 indicated the ecophysiological parameters behind clade distributions are more complex than irradiance alone. Clade OII, containing the putatively low-light adapted strains, was detected at warm oligotrophic sites. In contrast, Clade OI, containing high-light adapted strains, was present in cooler mesotrophic and coastal waters. Maximal OI abundance (19 555±37 18S rDNA copies per ml) was detected in mesotrophic waters at 40 m depth, approaching the nutricline. OII was often more abundant at the deep chlorophyll maximum, when nutrient concentrations were significantly higher than at the surface (stratified euphotic zone waters). However, in mixed euphotic-zone water columns, relatively high numbers (for example, 891±107 18S rDNA copies per ml, Sargasso Sea, springtime) were detected at the surface. Both Clades OI and OII were found at multiple euphotic zone depths, but co-occurrence at the same geographical location appeared rare and was detected only in continental slope waters. In situ growth rate estimates using these primer-probes and better comprehension of physiology will enhance ecological understanding of Ostreococcus Clades OII and OI which appear to be oceanic and coastal clades, respectively.  相似文献   

3.
The importance of the cyanobacteria Prochlorococcus and Synechococcus in marine ecosystems in terms of abundance and primary production can be partially explained by ecotypic differentiation. Despite the dominance of eukaryotes within photosynthetic picoplankton in many areas a similar differentiation has never been evidenced for these organisms. Here we report distinct genetic [rDNA 18S and internal transcribed spacer (ITS) sequencing], karyotypic (pulsed-field gel electrophoresis), phenotypic (pigment composition) and physiological (light-limited growth rates) traits in 12 Ostreococcus strains (Prasinophyceae) isolated from various marine environments and depths, which suggest that the concept of ecotype could also be valid for eukaryotes. Internal transcribed spacer phylogeny grouped together four deep strains isolated between 90 m and 120 m depth from different geographical origins. Three deep strains displayed larger chromosomal bands, different chromosome hybridization patterns, and an additional chlorophyll (chl) c-like pigment. Furthermore, growth rates of deep strains show severe photo-inhibition at high light intensities, while surface strains do not grow at the lowest light intensities. These features strongly suggest distinct adaptation to environmental conditions encountered at surface and the bottom of the oceanic euphotic zone, reminiscent of that described in prokaryotes.  相似文献   

4.
The cell cycle has been extensively studied in various organisms, and the recent access to an overwhelming amount of genomic data has given birth to a new integrated approach called comparative genomics. Comparing the cell cycle across species shows that its regulation is evolutionarily conserved; the best-known example is the pivotal role of cyclin-dependent kinases in all the eukaryotic lineages hitherto investigated. Interestingly, the molecular network associated with the activity of the CDK-cyclin complexes is also evolutionarily conserved, thus, defining a core cell cycle set of genes together with lineage-specific adaptations. In this paper, we describe the core cell cycle genes of Ostreococcus tauri, the smallest free-living eukaryotic cell having a minimal cellular organization with a nucleus, a single chloroplast, and only one mitochondrion. This unicellular marine green alga, which has diverged at the base of the green lineage, shows the minimal yet complete set of core cell cycle genes described to date. It has only one homolog of CDKA, CDKB, CDKD, cyclin A, cyclin B, cyclin D, cyclin H, Cks, Rb, E2F, DP, DEL, Cdc25, and Wee1. We have also added the APC and SCF E3 ligases to the core cell cycle gene set. We discuss the potential of genome-wide analysis in the identification of divergent orthologs of cell cycle genes in different lineages by mining the genomes of evolutionarily important and strategic organisms.  相似文献   

5.
With fewer than 8000 genes and a minimalist cellular organization, the green picoalga Ostreococcus tauri is one of the simplest photosynthetic eukaryotes. Ostreococcus tauri contains many plant‐specific genes but exhibits a very low gene redundancy. The haploid genome is extremely dense with few repeated sequences and rare transposons. Thanks to the implementation of genetic transformation and vectors for inducible overexpression/knockdown this picoeukaryotic alga has emerged in recent years as a model organism for functional genomics analyses and systems biology. Here we report the development of an efficient gene targeting technique which we use to knock out the nitrate reductase and ferritin genes and to knock in a luciferase reporter in frame to the ferritin native protein. Furthermore, we show that the frequency of insertion by homologous recombination is greatly enhanced when the transgene is designed to replace an existing genomic insertion. We propose that a natural mechanism based on homologous recombination may operate to remove inserted DNA sequences from the genome.  相似文献   

6.
CUL1 regulates TOC1 protein stability in the Arabidopsis circadian clock   总被引:1,自引:0,他引:1  
The circadian clock is the endogenous timer that coordinates physiological processes with daily and seasonal environmental changes. In Arabidopsis thaliana , establishment of the circadian period relies on targeted degradation of TIMING OF CAB EXPRESSION 1 (TOC1) by the 26S proteasome. ZEITLUPE (ZTL) is the F-box protein that associates with the SCF (Skp/Cullin/F-box) E3 ubiquitin ligase that is responsible for marking TOC1 for turnover. CULLIN1 (CUL1) is a core component of SCF complexes and is involved in multiple signaling pathways. To assess the contribution of CUL1-containing SCF complexes to signaling within the plant oscillator, circadian rhythms were examined in the recessive, temperature-sensitive CUL1 allele axr6-3 . The activity of CUL1 in this mutant declines progressively with increasing ambient temperature, resulting in more severe defects in CUL1-dependent activities at elevated temperature. Examination of circadian rhythms in axr6-3 revealed circadian phenotypes comparable to those observed in ztl null mutants; namely, lengthened circadian period, altered expression of core oscillator genes, and limited degradation of TOC1. In addition, treatment of seedlings with exogenous auxin did not alter TOC1 stability. These results demonstrate that CUL1 is required for TOC1 degradation and further suggest that this protein is the functional cullin for the SCFZTL complex.  相似文献   

7.
8.
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b(5), and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment.  相似文献   

9.
The marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue‐light receptors such as aureochromes to absorb shorter‐wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV‐HK) that functions as a new class of eukaryotic blue‐light receptor in the pico‐phytoplanktonic cell Ostreococcus tauri. This LOV‐HK is related to the large family of LOV‐HKs found in prokaryotes. Phylogenetic analysis indicates that the LOV domains from LOV‐HKs, including O. tauri LOV‐HK, and phototropins (phot; plant and green algal LOV serine/threonine kinases) have different evolutionary histories. Photochemical analysis shows that the LOV domain of LOV‐HK binds a flavin cofactor and absorbs blue light with a fast photocycle compared with its prokaryotic counterparts. Ostreococcus tauri LOV‐HK expression is induced by blue light and is under circadian control. Further, both overexpression and downregulation of LOV‐HK result in arrhythmia of the circadian reporter CCA1:Luc under constant blue light. In contrast, photochemical inactivation of O. tauri LOV‐HK is without effect, demonstrating its importance for function of the circadian clock under blue light. Overexpression/downregulation of O. tauriLOV‐HK alters CCA1 rhythmicity under constant red light, irrespective of LOV‐HK’s photochemical reactivity, suggesting that O. tauri LOV‐HK also participates in regulation of the circadian clock independent of its blue‐light‐sensing property. Molecular characterization of O. tauri LOV‐HK demonstrates that this type of photoreceptor family is not limited to prokaryotes.  相似文献   

10.
Glycosylation is an intricate process requiring the coordinated action of multiple proteins, including glycosyltransferases, glycosidases, sugar nucleotide transporters and trafficking proteins. Work by several groups points to a role for microRNA (miRNA) in controlling the levels of specific glycosyltransferases involved in cancer, neural migration and osteoblast formation. Recent work in our laboratory suggests that miRNA are a principal regulator of the glycome, translating genomic information into the glycocode through tuning of enzyme levels. Herein we overlay predicted miRNA regulation of glycosylation related genes (glycogenes) onto maps of the common N-linked and O-linked glycan biosynthetic pathways to identify key regulatory nodes of the glycome. Our analysis provides insights into glycan regulation and suggests that at the regulatory level, glycogenes are non-redundant.  相似文献   

11.
Ding Z  Doyle MR  Amasino RM  Davis SJ 《Genetics》2007,176(3):1501-1510
It has been proposed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) together with TIMING OF CAB EXPRESSION 1 (TOC1) make up the central oscillator of the Arabidopsis thaliana circadian clock. These genes thus drive rhythmic outputs, including seasonal control of flowering and photomorphogenesis. To test various clock models and to disclose the genetic relationship between TOC1 and CCA1/LHY in floral induction and photomorphogenesis, we constructed the cca1 lhy toc1 triple mutant and cca1 toc1 and lhy toc1 double mutants and tested various rhythmic responses and circadian output regulation. Here we report that rhythmic activity was dramatically attenuated in cca1 lhy toc1. Interestingly, we also found that TOC1 regulates the floral transition in a CCA1/LHY-dependent manner while CCA1/LHY functions upstream of TOC1 in regulating a photomorphogenic process. This suggests to us that TOC1 and CCA1/LHY participate in these two processes through different strategies. Collectively, we have used genetics to provide direct experimental support of previous modeling efforts where CCA1/LHY, along with TOC1, drives the circadian oscillator and have shown that this clock is essential for correct output regulation.  相似文献   

12.
13.
14.
Rab GTPases are molecular switches with essential roles in mediating vesicular trafficking and establishing organelle identity. The conversion from the inactive, cytosolic to the membrane-bound, active species and back is tightly controlled by regulatory proteins. Recently, the roles of membrane properties and lipid composition of different target organelles in determining the activity state of Rabs have come to light. The investigation of several Rab guanine nucleotide exchange factors (GEFs) has revealed principles of how the recruitment via lipid interactions and the spatial confinement on the membrane surface contribute to spatiotemporal specificity in the Rab GTPase network. This paints an intricate picture of the control mechanisms in Rab activation and highlights the importance of the membrane lipid code in the organization of the endomembrane system.  相似文献   

15.
16.
17.
18.
In osteoarthritis, chondrocytes undergo a phenotype shift characterised by reduced expression of SOX9 (sry-box 9) and increased production of cartilage-degrading enzymes, e.g. MMP13 (matrix metalloproteinase 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). The chondrocyte clock is also altered. Specifically, the peak level of PER2 is elevated, but peak level of BMAL1 reduced in osteoarthritic chondrocytes. The purpose of this study was to determine whether increased PER2 expression causes disease-associated changes in chondrocyte activity and to identify whether known risk factors for osteoarthritis induce changes in PER2 and BMAL1 expression. Primary human chondrocytes isolated from macroscopically normal cartilage were serum-starved overnight then re-fed with serum-replete media with/without interleukin 1β (IL-1β) (10 ng/mL), hydrogen peroxide (100 µM) or basic calcium phosphate (BCP) crystals (50 µg/mL). Peak level of BMAL1 was lower, whereas PER2 levels remained elevated for longer, in chondrocytes treated with IL-1β, hydrogen peroxide or BCP crystals compared to untreated cells. Levels of SOX9 were lower, whereas levels of ADAMTS5 and MMP13 were higher, in chondrocytes exposed to any of the three treatments compared to untreated cells. Knockdown of PER2 using siRNA partially abrogated the effects of each treatment on chondrocyte phenotype marker expression. Similarly, in chondrocytes isolated from osteoarthritic cartilage PER2 knockdown was associated with increased SOX9, reduced ADAMTS5 and reduced RNA and protein levels of MMP13 indicating partial mitigation of the osteoarthritic phenotype. Conversely, further ablation of BMAL1 expression in osteoarthritic chondrocytes resulted in a further reduction in SOX9 and increase in MMP13 expression. Overexpression of PER2 in the H5 chondrocyte cell line led to increased ADAMTS5 and MMP13 and decreased SOX9 expression. Localised inflammation, oxidative stress and BCP crystal deposition in osteoarthritic joints may contribute to disease pathology by inducing changes in the chondrocyte circadian clock.  相似文献   

19.
Exercise increases skeletal muscle health in part by altering the types of genes that are transcribed. Previous work suggested that glucocorticoids signal through the protein Regulated in Development and DNA Damage 1 (REDD1) to regulate gene expression following acute aerobic exercise. The present study shows that expression of the core clock gene, Period1, is among those modulated by the glucocorticoid-REDD1 signaling pathway in skeletal muscle. We also provide evidence that Aldosterone and Epinephrine contribute to the regulation of Period1 expression via REDD1. These data show that adrenal stress hormones signal through REDD1 to regulate skeletal muscle gene expression, specifically those of the core clock, following acute aerobic exercise.  相似文献   

20.
Prasinoviruses infecting unicellular green algae in the order Mamiellales (class Mamiellophyceae) are commonly found in coastal marine waters where their host species frequently abound. We tested 40 Ostreococcus tauri viruses on 13 independently isolated wild-type O. tauri strains, 4 wild-type O. lucimarinus strains, 1 Ostreococcus sp. ("Ostreococcus mediterraneus") clade D strain, and 1 representative species of each of two other related species of Mamiellales, Bathycoccus prasinos and Micromonas pusilla. Thirty-four out of 40 viruses infected only O. tauri, 5 could infect one other species of the Ostreococcus genus, and 1 infected two other Ostreococcus spp., but none of them infected the other genera. We observed that the overall susceptibility pattern of Ostreococcus strains to viruses was related to the size of two host chromosomes known to show intraspecific size variations, that genetically related viruses tended to infect the same host strains, and that viruses carrying inteins were strictly strain specific. Comparison of two complete O. tauri virus proteomes revealed at least three predicted proteins to be candidate viral specificity determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号