首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have analysed various adult organs and different developmental stages of mouse embryos for the presence of octamer-binding proteins. A variety of new octamer-binding proteins were identified in addition to the previously described Oct1 and Oct2. Oct1 is ubiquitously present in murine tissues, in agreement with cell culture data. Although Oct2 has been described as a B-cell-specific protein, similar complexes were also found with extracts from brain, kidney, embryo and sperm. In embryo and brain at least two other proteins, Oct3 and Oct7, are present. A new microextraction procedure allowed the detection of two maternally expressed octamer-binding proteins, Oct4 and Oct5. Both proteins are present in unfertilized oocytes and embryonic stem cells, the latter containing an additional protein, Oct6. Whereas Oct4 was not found in sperm or testis, it is expressed in male and female primordial germ cells. Therefore Oct4 expression is specific for the female germline at later stages of germ cell development. Our results indicate that a family of octamer-binding proteins is present during mouse development and is differentially expressed during early embryogenesis. Protease clipping experiments of Oct4 and Oct1 suggest that both proteins contain similar DNA-binding domains.  相似文献   

3.
OCT4 is a highly conserved gene and plays an important role during early embryonic development and differentiation. Similar to human OCT4, mouse Oct4 gene generates variants. Oct4A is a master regulator of self-renewal in pluripotent stem cells. In this study, we have identified a novel Oct4 spliced variant, designated mouse Oct4B, encoding 3 isoforms, termed Oct4B-247aa, Oct4B-190aa and Oct4B-164aa. Furthermore, we have examined the expression pattern of these isoforms in non-pluripotent cells and their function in somatic cell reprogramming. The results revealed the isoforms 247aa, 164aa localized mainly in nucleus and 190aa expressed dotted in the cytoplasm. In contrast to Oct4A, Oct4B does not function in somatic reprogramming as that of Oct4A. Taken together, our data for first time described the intact coding sequence of mouse Oct4B and its function in somatic cell reprogramming. These findings will be important for further analysis of the epigenetic mechanisms of reprogramming and highlight the necessity of discriminating Oct4 isoforms in future stem cell research.  相似文献   

4.
5.
6.
7.
8.
Octamer-binding factor 3/4 (Oct3/4) is one of the key regulators maintaining the pluripotency and self-renewal in embryonic stem cells and is involved in the developmental events. However, the functional significance of Oct3/4 remains to be clarified during tooth morphogenesis. This study aimed to examine the functional role of Oct3/4 in mouse. During tooth morphogenesis (E11–E16.5), Oct3/4-positive cells, detected by nuclear immunoreaction, increased in number, and subsequently, their immunoreaction shifted from the nucleus to the cytoplasm at the stage of cell differentiation (E18.5). Quantitative real-time PCR clearly demonstrated the relationship between isoforms of Oct3/4 and the in vivo cellular localization of Oct3/4, suggesting that the Oct3/4 expressed in nucleus was Oct3/4A, whereas that expressed in the cytoplasm was Oct3/4B. RNAi knockdown of Oct3/4 induced apoptosis and arrested tooth morphogenesis. Our results suggest that (1) the increased number of Oct3/4-positive cells with nuclear immunoreaction correlate with active cell proliferation during tooth morphogenesis and (2) the shift of Oct3/4 from the nucleus to the cytoplasm plays a crucial role in cell differentiation.  相似文献   

9.
The polyspecific organic cation transporters 1 and 2 (Oct1 and -2) transport a broad range of substrates, including drugs, toxins, and endogenous compounds. Their strategic localization in the basolateral membrane of epithelial cells in the liver, intestine (Oct1), and kidney (Oct1 and Oct2) suggests that they play an essential role in removing noxious compounds from the body. We previously showed that in Oct1(-/-) mice, the hepatic uptake and intestinal excretion of organic cations are greatly reduced. Since Oct1 and Oct2 have extensively overlapping substrate specificities, they might be functionally redundant. To investigate the pharmacologic and physiologic roles of these proteins, we generated Oct2 single-knockout and Oct1/2 double-knockout mice. Oct2(-/-) and Oct1/2(-/-) mice are viable and fertile and display no obvious phenotypic abnormalities. Absence of Oct2 in itself had little effect on the pharmacokinetics of tetraethylammonium (TEA), but in Oct1/2(-/-) mice, renal secretion of this compound was completely abolished, leaving only glomerular filtration as a TEA clearance mechanism. As a consequence, levels of TEA were substantially increased in the plasma of Oct1/2(-/-) mice. This study shows that Oct1 and Oct2 together are essential for renal secretion of (small) organic cations. A deficiency in these proteins may thus result in increased drug sensitivity and toxicity.  相似文献   

10.
11.
The Octamer 4 gene (Oct4) is a master pluripotency controller that has been detected in several types of tumors. Here, we examine the expression of Oct4 in human esophageal squamous cell carcinoma (ESCC). We found that punctate Oct4 protein was expressed in most (93.7%) ESCC samples but it was not observed in esophageal mucosa. Some ESCC cells had the capacity to form tumorospheres; those with an Oct4+-rich cell phenotype had increased proliferation and Oct4 mRNA levels compared to those of differentiated cells in culture or xenograft tumors. The over-expression of Oct4 in ESCCs suggests that it is a potential target for ESCC therapy. Oct4 could be a useful tumor marker in an immunohistochemical panel designed to differentiate between ESCC and esophageal mucosa. Expression of Oct4 in tumorospheres might indicate the presence of a population of ECSCs and its expression in xenograft tumors suggests that Oct4 is also associated with tumor metastasis.  相似文献   

12.
An invertebrate biogenic amine, octopamine, plays diverse roles in multiple physiological processes (e.g. neurotransmitter, neuromodulator, and circulating neurohormone). Octopamine is thought to function by binding to G-protein-coupled receptors. In Drosophila, three β-adrenergic-like octopamine receptors (Octβ1R, Octβ2R, and Octβ3R) have been identified. We investigated the expression of three OctβR genes in embryos, larvae, and adults. These OctβRs showed distinct expression patterns in the central nervous system (CNS) throughout development, and Octβ3R expression was evident in an endocrine organ, the ring gland, in larvae. In larvae, Octβ1R, Octβ2R, and Octβ3R were expressed in salivary glands and imaginal discs, Octβ2R and Octβ3R in midgut, and Octβ3R in gonads. In adult, besides in the CNS, each OctβR was strongly expressed in ovary and testis. Our findings provide a basis for understanding the mechanisms by which OctβRs mediate multiple diverse octopaminergic functions during development.  相似文献   

13.
14.
15.
16.
17.
18.
Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these functions. Here, we show that fusion proteins containing the coding sequence of Oct4 or Xlpou91 (the Xenopus homolog of Oct4) fused to activating regions, but not those fused to repressing regions, behave as Oct4, suppressing differentiation and promoting maintenance of undifferentiated phenotypes in vivo and in vitro. An Oct4 activation domain fusion supported embryonic stem cell self-renewal in vitro at lower concentrations than that required for Oct4 while alleviating the ordinary requirement for the cytokine LIF. At still lower levels of the fusion, LIF dependence was restored. We conclude that the necessary and sufficient function of Oct4 in promoting pluripotency is to activate specific target genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号