首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51   总被引:11,自引:0,他引:11  
Rad51-mediated homologous recombination (HR) is essential for maintenance of genome integrity. The Xrcc3 protein functions in HR DNA repair, and studies suggest it has multiple roles at different stages in this pathway. Defects in vertebrate XRCC3 result in elevated levels of spontaneous and DNA damage-induced chromosomal abnormalities, as well as increased sensitivity to DNA damaging agents. Formation of DNA damaged-induced nuclear Rad51 foci requires Xrcc3 and the other Rad51 paralog proteins (Rad51B, Rad51C, Rad51D, Xrcc2), thus supporting a model in which an early function of Xrcc3 involves promoting assembly of active Rad51 repair complexes. However, it is not known whether Xrcc3 or other Rad51 paralog proteins accumulate at DNA breaks, and if they do whether their stable association with breaks requires Rad51. Here we report for the first time that Xrcc3 forms distinct foci in human cells and that nuclear Xrcc3 begins to localize at sites of DNA damage within 10 min after radiation treatment. RNAi-mediated knock down of Rad51 has no effect on the DNA damage-induced localization of Xrcc3 to DNA breaks. Our data are consistent with a model in which Xrcc3 associates directly with DNA breaks independent of Rad51, and subsequently facilitates formation of the Rad51 nucleoprotein filament.  相似文献   

2.
Homologous recombination is essential for productive DNA replication particularly under stress conditions. We previously demonstrated a stress-induced recruitment of Rad51 to mitochondria and a critical need for its activity in the maintenance of mitochondrial DNA (mtDNA) copy number. Using the human osteosarcoma cell line U20S, we show in the present study that recruitment of Rad51 to mitochondria under stress conditions requires ongoing mtDNA replication. Additionally, Rad51 levels in mitochondria increase in cells recovering from mtDNA depletion. Our findings highlight an important new role for Rad51 in supporting mtDNA replication, and further promote the idea that recombination is indispensable for sustaining DNA synthesis under conditions of replication stress.  相似文献   

3.
The Xrcc2 and Rad51D/Rad51L3 proteins, which belong to the Rad51 paralogs, are required for homologous recombinational repair (HRR) in vertebrates. The Xrcc2 and Rad51D/Rad51L3 genes, whose products interact with each other, have essential roles in ensuring normal embryonic development. In the present study, we coexpressed the human Xrcc2 and Rad51D/Rad51L3 proteins (Xrcc2 and Rad51D, respectively) in Escherichia coli, and purified the Xrcc2*Rad51D complex to homogeneity. The Xrcc2 small middle dotRad51D complex catalyzed homologous pairing between single-stranded and double-stranded DNA, similar to the function of the Xrcc3*Rad51C complex, which is another complex of the Rad51 paralogs. An electron microscopic analysis showed that Xrcc2*Rad51D formed a multimeric ring structure in the absence of DNA. In the presence of ssDNA, Xrcc2*Rad51D formed a filamentous structure, which is commonly observed among the human homologous pairing proteins, Rad51, Rad52, and Xrcc3*Rad51C.  相似文献   

4.
Rad51-catalyzed homologous recombination is an important pathway for repair of DNA double strand breaks and maintenance of genome integrity in vertebrate cells. Five proteins referred to as Rad51 paralogs promote Rad51 activity and are proposed to act at various, and in some cases, multiple stages in the recombination pathway. Imaging studies of native Rad51 have revealed its cellular response to DNA damage, yet visualization of the paralog proteins has met with limited success. In this study, we are able to detect endogenous Rad51C and Xrcc3 in human cells. In an effort to determine how Rad51, Rad51C, and Xrcc3 influence the pattern of localization of each other over the time course of DNA damage and repair, we have made the unexpected observation that Rad51 degradation via the ubiquitin-mediated proteasome pathway occurs as a natural part of recombinational DNA repair. Additionally, we find that Rad51C plays an important role in regulating this process. This article contains supplementary material, which may be viewed at the Journal of Cellular Biochemistry website at http://www.interscience.wiley.com/jpages/0730-2312/suppmat/index.html.  相似文献   

5.
DNA interstrand crosslinks (ICL) present a major threat to cell viability and genome integrity. In eukaryotic cells, the ICLs have been suggested to be repaired by a complex process involving Xpf/Ercc1-mediated endonucleolytic incision and homologous recombination (HR). However, the entire feature of the ICL tolerating mechanism is still poorly understood. Here we studied chromosome aberrations (CA) and sister chromatid exchanges (SCE) by the use of the crosslinking agent mitomycin C (MMC), in chicken DT40 cells with the HR genes disrupted by targeted replacement. The disruption of the Rad54, Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3 genes resulted in a dramatic reduction of spontaneous and MMC-induced SCEs. Interestingly, while HR-deficient cells were hypersensitive to cell killing by MMC, MMC-induced CAs were also suppressed in the HR-deficient cells except for Rad51D-, Xrcc2- and Xrcc3-deficient cells. These observations indicate that DNA double strand breaks (DSB) at stalled replication forks and those arising as repair intermediates present strong signals to cell death but can be tolerated by the HR repair pathway, where Rad54, Rad51B and Rad51C have an initiative role and repair can be completed by their paralogs Rad51D, Xrcc2 and Xrcc3. The impairment of the HR pathway, which otherwise leads to cell death, may be somewhat substituted by an alternative mechanism such as the Mre11/Rad50/Nbs1 pathway, resulting in reduced frequencies of SCEs and CAs.  相似文献   

6.
Domain mapping of the Rad51 paralog protein complexes   总被引:9,自引:2,他引:7  
The five human Rad51 paralogs are suggested to play an important role in the maintenance of genome stability through their function in DNA double-strand break repair. These proteins have been found to form two distinct complexes in vivo, Rad51B–Rad51C–Rad51D–Xrcc2 (BCDX2) and Rad51C–Xrcc3 (CX3). Based on the recent Pyrococcus furiosus Rad51 structure, we have used homology modeling to design deletion mutants of the Rad51 paralogs. The models of the human Rad51B, Rad51C, Xrcc3 and murine Rad51D (mRad51D) proteins reveal distinct N-terminal and C-terminal domains connected by a linker region. Using yeast two-hybrid and co-immunoprecipitation techniques, we have demonstrated that a fragment of Rad51B containing amino acid residues 1–75 interacts with the C-terminus and linker of Rad51C, residues 79–376, and this region of Rad51C also interacts with mRad51D and Xrcc3. We have also determined that the N-terminal domain of mRad51D, residues 4–77, binds to Xrcc2 while the C-terminal domain of mRad51D, residues 77–328, binds Rad51C. By this, we have identified the binding domains of the BCDX2 and CX3 complexes to further characterize the interaction of these proteins and propose a scheme for the three-dimensional architecture of the BCDX2 and CX3 paralog complexes.  相似文献   

7.
Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.  相似文献   

8.
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair.  相似文献   

9.
Mitochondrial prohibitin (PHB) proteins have diverse functions, such as the regulation of apoptosis and the maintenance of mitochondrial morphology. In this study, we clarified a novel mitochondrial function of PHB1 that regulates the organization and maintenance of mitochondrial DNA (mtDNA). In PHB1-knockdown cells, we found that mtDNA is not stained by fluorescent dyes, such as ethidium bromide and PicoGreen, although the mitochondrial membrane potential still maintains. We also demonstrated that mtDNA, which is predominantly found in the NP-40-insoluble fraction when isolated from normal mitochondria, is partially released into the soluble fraction when isolated from PHB1-knockdown cells, indicating that the organization of the mitochondrial nucleoids has been altered. Furthermore, we found that PHB1 regulates copy number of mtDNA by stabilizing TFAM protein, a known protein component of the mitochondrial nucleoids. However, TFAM does not affect the organization of mtDNA as observed in PHB1-knockdown cells. Taken together, these results demonstrate that PHB1 maintains the organization and copy number of the mtDNA through both TFAM-independent and -dependent pathways.  相似文献   

10.
The correct organization of mitochondrial DNA (mtDNA) in nucleoids and the contacts of mitochondria with the ER play an important role in maintaining the mitochondrial genome distribution within the cell. Mitochondria-associated ER membranes (MAMs) consist of interacting proteins and lipids located in the outer mitochondrial membrane and ER membrane, forming a platform for the mitochondrial inner membrane-associated genome replication factory as well as connecting the nucleoids with the mitochondrial division machinery. We show here that knockdown of a core component of mitochondrial nucleoids, TFAM, causes changes in the mitochondrial nucleoid populations, which subsequently impact ER-mitochondria membrane contacts. Knockdown of TFAM causes a significant decrease in the copy number of mtDNA as well as aggregation of mtDNA nucleoids. At the same time, it causes significant upregulation of the replicative TWNK helicase in the membrane-associated nucleoid fraction. This is accompanied by a transient elevation of MAM proteins, indicating a rearrangement of the linkage between ER and mitochondria triggered by changes in mitochondrial nucleoids. Reciprocal knockdown of the mitochondrial replicative helicase TWNK causes a decrease in mtDNA copy number and modifies mtDNA membrane association, however, it does not cause nucleoid aggregation and considerable alterations of MAM proteins in the membrane-associated fraction. Our explanation is that the aggregation of mitochondrial nucleoids resulting from TFAM knockdown triggers a compensatory mechanism involving the reorganization of both mitochondrial nucleoids and MAM. These results could provide an important insight into pathological conditions associated with impaired nucleoid organization or defects of mtDNA distribution.  相似文献   

11.
The mitochondrial single-stranded DNA-binding protein (mtSSB) is believed to coordinate the functions of DNA polymerase γ (pol γ) and the mitochondrial DNA (mtDNA) helicase at the mtDNA replication fork. We generated five variants of the human mtSSB bearing mutations in amino acid residues specific to metazoans that map on the protein surface, removed from the single-stranded DNA (ssDNA) binding groove. Although the mtSSB variants bound ssDNA with only slightly different affinities, they exhibited distinct capacities to stimulate the DNA polymerase activity of human pol γ and the DNA unwinding activity of human mtDNA helicase in vitro. Interestingly, we observed that the variants with defects in stimulating pol γ had unaltered capacities to stimulate the mtDNA helicase; at the same time, variants showing reduced stimulation of the mtDNA helicase activity promoted DNA synthesis by pol γ similarly to the wild-type mtSSB. The overexpression of the equivalent variants of Drosophila melanogaster mtSSB in S2 cells in culture caused mtDNA depletion under conditions of mitochondrial homeostasis. Furthermore, we observed more severe reduction of mtDNA copy number upon expression of these proteins during recovery from treatment with ethidium bromide, when mtDNA replication is stimulated in vivo. Our findings suggest that mtSSB uses distinct structural elements to interact functionally with its mtDNA replisome partners and to promote proper mtDNA replication in animal cells.  相似文献   

12.
The Xrcc3 protein, which is required for the homologous recombinational repair of damaged DNA, forms a complex with the Rad51C protein in human cells. Mutations in either the Xrcc3 or Rad51C gene cause extreme sensitivity to DNA-damaging agents and generate the genomic instability frequently found in tumors. In the present study, we found that the Xrcc3 segment containing amino acid residues 63–346, Xrcc363–346, is the Rad51C-binding region. Biochemical analyses revealed that Xrcc363–346 forms a complex with Rad51C, and the Xrcc363–346– Rad51C complex possesses ssDNA and dsDNA binding abilities comparable to those of the full-length Xrcc3–Rad51C complex. Based on the structure of RecA, which is thought to be the ancestor of Xrcc3, six Xrcc3 point mutants were designed. Two-hybrid and biochemical analyses of the Xrcc3 point mutants revealed that Tyr139 and Phe249 are essential amino acid residues for Rad51C binding. Superposition of the Xrcc3 Tyr139 and Phe249 residues on the RecA structure suggested that Tyr139 may function to ensure proper folding and Phe249 may be important to constitute the Rad51C-binding interface in Xrcc3.  相似文献   

13.
14.
The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis   总被引:13,自引:0,他引:13  
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified from yeast (Rad55, Rad57 and Dmc1) to vertebrates (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3 and Dmc1). These Rad51-like proteins are all members of the genetic recombination and DNA damage repair pathways. The sequenced genome of Arabidopsis thaliana encodes putative homologues of all six vertebrate Rad51-like proteins. We have identified and characterized an Arabidopsis mutant defective for one of these, AtXRCC3, the homologue of XRCC3. atxrcc3 plants are sterile, while they have normal vegetative development. Cytological observation shows that the atxrcc3 mutation does not affect homologous chromosome synapsis, but leads to chromosome fragmentation after pachytene, thus disrupting both male and female gametogenesis. This study shows an essential role for AtXrcc3 in meiosis in plants and possibly in other higher eukaryotes. Furthermore, atxrcc3 cells and plants are hypersensitive to DNA-damaging treatments, supporting the involvement of this Arabidopsis Rad51-like protein in recombinational repair.  相似文献   

15.
How mitochondrial DNA (mtDNA) copy number is determined and modulated according to cellular demands is largely unknown. Our previous investigations of the related DNA helicases Pif1p and Rrm3p uncovered a role for these factors and the conserved Mec1/Rad53 nuclear checkpoint pathway in mtDNA mutagenesis and stability in Saccharomyces cerevisiae. Here, we demonstrate another novel function of this pathway in the regulation of mtDNA copy number. Deletion of RRM3 or SML1, or overexpression of RNR1, which recapitulates Mec1/Rad53 pathway activation, resulted in an approximately twofold increase in mtDNA content relative to the corresponding wild-type yeast strains. In addition, deletion of RRM3 or SML1 fully rescued the approximately 50% depletion of mtDNA observed in a pif1 null strain. Furthermore, deletion of SML1 was shown to be epistatic to both a rad53 and an rrm3 null mutation, placing these three genes in the same genetic pathway of mtDNA copy number regulation. Finally, increased mtDNA copy number via the Mec1/Rad53 pathway could occur independently of Abf2p, an mtDNA-binding protein that, like its metazoan homologues, is implicated in mtDNA copy number control. Together, these results indicate that signaling through the Mec1/Rad53 pathway increases mtDNA copy number by altering deoxyribonucleoside triphosphate pools through the activity of ribonucleotide reductase. This comprises the first linkage of a conserved signaling pathway to the regulation of mitochondrial genome copy number and suggests that homologous pathways in humans may likewise regulate mtDNA content under physiological conditions.  相似文献   

16.
17.
The discovery of three Rad51 paralogs in Saccharomyces cerevisiae (Rad55, Rad57, and Dmc1), four in Schizosaccharomyces pombe (Rhp55, Rhp57, Rlp 1, and Dmc 1), and six in human (Rad51 B, Rad51 C, Rad51 D, Xrcc2, Xrcc3, and Dmcl) indicate the functional diversity and specialization of RecA-like proteins in the line from the lower to higher organisms. This paper reports characterization of a number of mitotic and meiotic phenotypes of the cells mutant in rlpl gene, encoding a paralog of Rad5 1, in fission yeasts. No evident role of Rlp I protein in the repair of spontaneous lesions emerging during mating type switching was found. Rlpl does not interact physically with Dmcl. An elevated expression of rhp51 has a dominant negative effect on the cell survivability of rlpl mutant exposed to a DNA-damaging agent. We assume that Rlp 1 acts at the stages of recombination connected with disassembling of the nucleoprotein filament formed by Rhp51 protein.  相似文献   

18.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

19.
BRCA2 is a tumor suppressor gene that is linked to hereditary breast and ovarian cancer. Although the Brca2 protein participates in homologous DNA recombination (HR), its precise role remains unclear. From chicken DT40 cells, we generated BRCA2 gene-deficient cells which harbor a truncation at the 3' end of the BRC3 repeat (brca2tr). Comparison of the characteristics of brca2tr cells with those of other HR-deficient DT40 clones revealed marked similarities with rad51 paralog mutants (rad51b, rad51c, rad51d, xrcc2, or xrcc3 cells). The phenotypic similarities include a shift from HR-mediated diversification to single-nucleotide substitutions in the immunoglobulin variable gene segment and the partial reversion of this shift by overexpression of Rad51. Although recent evidence supports at least Xrcc3 and Rad51C playing a role late in HR, our data suggest that Brca2 and the Rad51 paralogs may also contribute to HR at the same early step, with their loss resulting in the stimulation of an alternative, error-prone repair pathway.  相似文献   

20.
Quantitative real time PCR (qPCR) is commonly used to determine cell mitochondrial DNA (mtDNA) copy number. This technique involves obtaining the ratio of an unknown variable (number of copies of an mtDNA gene) to a known parameter (number of copies of a nuclear DNA gene) within a genomic DNA sample. We considered the possibility that mtDNA:nuclear DNA (nDNA) ratio determinations could vary depending on the method of genomic DNA extraction used, and that these differences could substantively impact mtDNA copy number determination via qPCR. To test this we measured mtDNA:nDNA ratios in genomic DNA samples prepared using organic solvent (phenol–chloroform–isoamyl alcohol) extraction and two different silica-based column methods, and found mtDNA:nDNA ratio estimates were not uniform. We further evaluated whether different genomic DNA preparation methods could influence outcomes of experiments that use mtDNA:nDNA ratios as endpoints, and found the method of genomic DNA extraction can indeed alter experimental outcomes. We conclude genomic DNA sample preparation can meaningfully influence mtDNA copy number determination by qPCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号