首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zona fasciculata cells from the adrenal cortex of female Sprague-Dawley rats were fixed by immersion in potassium pyroantimonate-osmium tetroxide and potassium pyroantimonate-glutaraldehyde to study the distribution of calcium. Potassium pyroantimonate-osmium tetroxide treatment gave reproducible patterns of electron-opaque precipitate, whereas inconsistent deposits of reaction product were seen after potassium pyroantimonate-glutaraldehyde fixation. Nuclei showed sparse precipitate over heterochromatin and dense aggregates over areas of nucleoli surrounded by portions of the nucleolar-dense component. Two major cytoplasmic sites of precipitate were identified: mitochondria and vesicles of smooth endoplasmic reticulum. Most of the intramitochondrial precipitate was localized to the intracristal space. Precipitate was also seen in vesicles of Golgi apparatus. The extracellular space was filled with closely packed electron-opaque particles. Observation of tissues treated with control fixative saturated with EGTA showed little if any reaction, confirming that calcium was the primary cation precipitated by potassium pyroantimonate. Our results provide a method suitable for accurate localization of calcium in adrenocortical cells.  相似文献   

2.
In an attempt to establish the exact location of calcium within the preacetabular glands of cercariae of Schistosoma mansoni, these larvae were exposed to reagents (potassium oxalate, potassium pyroantimonate, chloranilic acid, and silver nitrate) useful in the detection of calcium, and were subsequently observed with the aid of light and electron microscopes. Cercariae incubated in potassium oxalate and viewed in polarized light showed birefringence only in the preacetabular gland funduses. At the ultrastructural level, the preacetabular glands of potassium oxalate-treated cercariae had no electron-dense precipitate, but instead had translucent, irregularly shaped inclusions, similar to spaces left by volatilized calcium oxalate as described by others. Pyroantimonate treatment, on the other hand, localized the reaction in the electron-lucent areas of the light-spotted granules. The von Kossa silver nitrate procedure destroyed the secretory granules; therefore, an electron-dense precipitate was distributed throughout the gland. However, pretreatment with chloranilic acid before fixation preserved the granules, and subsequent exposure to the von Kossa silver nitrate gave a reaction identical to that obtained with the pyroantimonate alone. When viewed in polarized light, chloranilic acid-incubated cercariae showed birefringence in the fundus and duct areas.  相似文献   

3.
Summary In an attempt to assign morphologic identities to previously distinguished functional calcium compartments in the anterior pituitary of the rat, we employed the potassium pyroantimonate technique for cation localization. Tissues were incubated for In at 37°C in control medium; with 10mM theophylline; or with depolarizing amounts of potassium. Precipitate was quantified on photomicrographs of tissue prepared for electron microscopy with a Talos Systems Digitizer. The nature of the electron dense precipitate was dependent on the experimental state of the tissue. Treatment with 5 mM EGTA abolished the dense precipitate. Electron microprobe analysis also confirmed that calcium was the predominant cation in the observed precipitate. The most significant changes in precipitate deposition occurred along the plasma membrane, the limiting membrane of secretory granules and within mitochondria. Dense precipitate was present along the plasma membrane only in cells treated with potassium. Control tissue exhibited higher levels of precipitate associated with the limiting membrane of secretory granules than either theophylline-treated or potassium-treated tissue. Mitochondria contained more precipitate in potassium-treated tissue than in controls; the mitochondria of theophylline-treated tissue contained intermediate levels of precipitate. Addition of either theophylline or depolarizing amounts of potassium has been associated with hormone secretion in anterior pituitary tissue of normal rats. Kinetic studies in our laboratory indicate that intracellular calcium shifts occur. The pyroantimonate technique is useful in verifying morphologically the calcium compartments involved in shifts in intracellular calcium.  相似文献   

4.
Y Kogaya  K Furuhashi 《Acta anatomica》1988,132(2):100-108
We investigated the ultrastructural localization of calcium in progenitor predentine and preodontoblasts of developing rat molar tooth germs using the potassium pyroantimonate technique. At the precalcification stage, antimonate reaction product was sparsely, randomly distributed in the preodontoblasts and in the progenitor predentine but no significant reaction could be noticed associated with matrix vesicles. At the matrix vesicle calcification stage, large amounts of antimonate reaction product tended to be localized in the region adjacent to the distal, outer surface membrane of preodontoblasts in which moderate antimonate reaction activity could be observed in mitochondria. Strong antimonate reaction was detected preferentially on the outer surface membrane of some matrix vesicles at this stage. At the subsequent collagen calcification stage, definite antimonate reaction was no longer seen within mitochondria of the late preodontoblasts, instead precipitate was mainly distributed in Golgi area, secretory granules and lateral intercellular spaces. It is suggested that although matrix vesicles contain few calcium capable of reacting to antimonate immediately after their biogenesis, subsequently, large amounts of calcium are accumulated associated with the outer surface membrane of matrix vesicles in the extracellular matrix.  相似文献   

5.
Ram spermatozoa were subjected to cold shock before fixation in pyroantimonate-osmium. Ultrathin sections revealed an electron-dense particulate precipitate in association with the cells. The precipitate was shown to be related to the presence of calcium by exposure of the material to EGTA which reduced or completely eliminated the deposits. In the acrosome region, very little precipitate was evident when the plasma membrane was intact. Cold shock resulted in the disruption of the plasma membrane. When the acrosome remained intact, precipitate was concentrated just anterior to the equatorial segment, but many cells also had acrosomal disruption and then a more even distribution of precipitate was seen on the outer acrosomal membrane. Precipitate was rarely visible within or beneath the acrosome. Post-acrosomally, calcium pyroantimonate deposits were frequently present in the dense lamina beneath the plasma membrane and these became more intense after cold shock. Midpiece sections revealed a few large granules beneath the plasma membrane and a fine particulate precipitate within mitochondria. Similarly, the fine precipitate was also associated with the outer dense fibres in midpieces and tails. Cold shock did not apparently increase the extent or intensity of precipitates in these sites.  相似文献   

6.
Potassium pyroantimonate added to fixative solutions has been used in tissue localization of sodium ions. The distribution and specificity of the resulting precipitate in rat kidney is described in this study. Two reproducible patterns of precipitate were obtained in control tissues. The first pattern, which occurred after fixation in solutions containing aldehyde, showed the precipitate to be mainly extracellular. The second pattern, showing the precipitate in both intracellular and extracellular locations, occurred after aldehyde fixation in those experimental situations favoring cellular swelling or after fixation with solutions containing osmium tetroxide. It appeared that sodium ions could move after fixation but that sodium pyroantimonate precipitate could not. Since model systems demonstrated that dense precipitate formed when potassium pyroantimonate was added to solutions containing certain biological amines or some divalent cations, it appeared likely that the reagent did not provide specific tissue localization for sodium ions.  相似文献   

7.
李明文  张福祥 《动物学报》1995,41(4):420-424
应用焦锑酸钾原位定位法对大熊猫精子获能和顶体反应过程中进行钙定位研究,发现未获能精子的 Ca2+主要结合于顶体前区和赤道段质膜外侧和顶体内膜内侧(核膜侧);随着获能的进行,Ca2+进入精子内部并主要结合于顶体区质膜内侧和顶体外膜外侧;顶体反应的精子,Ca2+结合于顶体内膜外侧、顶体后区质膜外侧和分散存在于释放的顶体内容物中,有些顶体反应精子的顶体内膜外侧结合的Ca2+特别丰富。精子尾部的Ca2+主要分布于中段线粒体内,且其内所含Ca2+含量随着获能和顶体反应而增加。另外尾部致密纤维和轴丝处也有少量Ca2+分布。  相似文献   

8.
Plasmodia of the acellular slime mold, Physarum polycephalum, were treated with an osmium tetroxide fixative containing potassium pyroantimonate to precipitate calcium and thereby localize calcium binding sites and sites of increased calcium concentration. Dense calcium pyroantimonate precipitates were detected within the nucleoli. The distribution of these precipitates during interphase and mitosis coincides with the distribution of the unique minichromosomes in Physarum, i.e., the numerous short pieces of extrachromosomal nucleolar chromatin containing segments of amplified DNA coding for ribosomal RNA. Calcium pyroantimonate precipitates were present as frequent dense granules in the mitochondrial matrix and as fine precipitates in the mitochondrial nucleoid. Large calcium-containing precipitates were seen within cytoplasmic vacuoles, confirming reports by others. In addition, we have identified calcium binding sites along the cytoplasmic surface of the plasma membrane. The distribution of calcium within the plasmodium is discussed in relation to the assembly of the mitotic spindle and the regulation of cell motility.  相似文献   

9.
The loci of calcium distribution in Nereis pharangeal visceral muscle have been examined by cytochemical precipitation using potassium pyroantimonate. In Na-, Ca- and Mg-free media, pyroantimonate incubation was used to pinpoint loci of intracellularly bound calcium. This method also revealed heavy deposition on the inner face of the plasma membrane, in the sarcoplasmic reticulum and nucleus. X-ray microprobe analysis of the precipitate confirmed the presence of calcium and antimony peaks. It is concluded that the plasma membrane may constitute a major calcium pool for the activation of contraction in this muscle.  相似文献   

10.
We describe a new cytochemical method for ultrastructural localization of intracellular calcium stores. This method uses fluoride ions for in situ precipitation of intracellular calcium during fixation. Comparisons made using oxalate, antimonate, or fluoride showed that fluoride was clearly superior for intracellular calcium localization in eggs of the sea urchin Strongylocentrotus purpuratus. Whereas oxalate generally gave no intracellular precipitate and antimonate gave copious but random precipitate, three prominent calcium stores were detected using fluoride: the tubular endoplasmic reticulum, the cortical granules, and large, clear, acidic vesicles of unknown function. The mitochondria of these eggs generally showed no detectable calcium deposits. X-ray spectra confirmed the presence of calcium in the fluoride precipitates, although in some cases magnesium was also detected. Rat skeletal muscle and sea urchin sperm were used to test the reliability of the fluoride method for calcium localization. In rat skeletal muscle, most fluoride precipitate was confined to the sarcoplasmic reticulum. Using sea urchin sperm, which transport calcium into the mitochondria after exposure to egg jelly to induce the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria contain no detectable calcium-containing precipitate. Within 4 min after induction of the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria displayed many foci of calcium-containing precipitate. The use of fluoride for intracellular calcium localization therefore appears to be a substantial improvement over previous cytochemical methods.  相似文献   

11.
Distribution of Ca2+ ions, precipitated by means of pyroantimonate potassium, has been investigated electron microscopically in secretory cells of the mammary gland of lactating white mice. In the glandular cells, that are at the state of inhibition of secretory activity, the cytochemical reaction product is localized on the internal side of the basal, lateral and apical parts of the plasmolemma, in mitochondrial matrix, in cisterns and in the Golgi complex vesicles, in the nuclear areas, occupied by euchromatin. Oxytocin effect produces a certain complex of ultrastructural changes in the cell accompanied by redistribution of Ca2+ ions. Amount of precipitate in mitochondria decreases. It is revealed in the lumen of dilated canals of the granular endoplasmic reticulum, in the zone of decondensated nuclear chromatin, in the Golgi complex vesicles. The vesicles become larger and fuse with each other. The changes mentioned demonstrate increased synthetic and transport processes, occurring in the glandular epithelium of the mammary gland after oxytocin effect.  相似文献   

12.
李明文  刘辉 《动物学报》1997,43(1):80-84
用焦锑酸钾原位定位法、膜结合Ca^2+荧光探针金霉素标记法,分别在电镜和光镜水平对小鼠卵成熟和卵受精过程中结合态Ca^2+的分布及其变化进行了研究,发现:1)Ca^2+分布于线粒体、胞质、内质网囊泡、微绒毛和透明带等部位,其中以线粒体基质中分布密度为最大;2)减数分裂I中、后期于纺锤体极区结合有较多的Ca^2+;3)生发泡、纺锤体和原核内膜结合态Ca^2+含量很少,但纺锤体和原核周围分布较多;4)  相似文献   

13.
The ultrastructural localization of calcium in the presumptive ectodermal cells of gastrulae of the newt, Cynops pyrrhogaster , was examined by cytochemical methods and X-ray microanalysis (XMA). The cells were fixed with solutions that contained potassium oxalate, potassium ferricyanide and potassium pyroantimonate to preserve the localization of intracellular calcium in situ and for the analysis of electron density due to calcium. Electron-dense deposits associated with the localization of calcium were observed under the electron microscope. Specificially, pigment granules, round vacuoles, endoplasmic reticulum and mitochondria as well as the extracellular matrix were observed to contain calcium. In addition, XMA clearly demonstrated the localization of calcium in all of these electron-dense organelles and yolk granules.  相似文献   

14.
Localization of calcium in skeletal and cardiac muscle   总被引:3,自引:0,他引:3  
Summary The requirement of calcium (Ca2+) in the excitation-contraction coupling of both skeletal and cardiac muscle is well established. However, the exact location of the intracellular storage sites of Ca2+ is not firmly established. We report here on the ultrastructural distribution of Ca2+ in white and red skeletal muscle and in cardiac muscle of the rat using combined phosphate-pyroantimonate (PPA) and oxalate-pyroantimonate (OPA) procedures. The methods are based on (a) stabilization and/or trapping of Ca2+ during the primary fixation step in glutaraldehyde by potassium phosphate or oxalate; (b) subsequent wash-out of all non-trapped cations such as Na+ and Mg2+ in potassium phosphate or oxalate; (c) conversion of the complexed or trapped Ca2+ into an electron-dense calcium pyroantimonate salt in 100 m-thick tissue sections; and (d) wash-out of the excess potassium pyroantimonate at alkaline pH.With the OPA procedure, mitochondria of all muscle types showed little precipitate. The junctional sarcoplasmic reticulum was stongly reactive in relaxed white skeletal muscle, negative in contracted white fibres and negative in red skeletal and cardiac muscle, independent of the state of relaxation-contraction. Other organelles were essentially free of deposits.With the PPA method, the precipitate was almost exclusively confined to the sarcolemma and its T-tubular invaginations in cardiac and slow skeletal muscle, and was absent in fast skeletal muscle. Apart from occasional deposits in mitochondria, all other organelles were free of precipitate. The sarcolemma-associated deposits were clearly confined to the inner leaflet of the lipid bilayer. The amount of precipitate varied within the contraction cycle, relaxed cells possessing the highest density.Exposure of the tissue to La3+ resulted in the complete absence of sarcolemma-bound precipitate suggesting that the Ca2+ is exchangeable. Furthermore, these cytological data suggest a basic difference in Ca2+ storage between white skeletal muscle on the one hand, and red skeletal and cardiac muscle on the other.  相似文献   

15.
Summary The precipitation patterns of the following ultracytochemical methods in rat muscle cells were compared and examined critically: the potassium pyroantimonate method for calcium demonstration; the calcium phosphate technique for the Ca2+ — ATPase reaction; the formazan reaction for the demonstration of creatine kinase activity (all performed on heart muscle); and the lead phosphate technique for the Mg2+ — ATPase reaction in skeletal muscle. Using X-ray microanalysis, it was found that the antimonate precipitate contains only calcium as the precipitated ion in the vast majority of cases. Most probably it consists of pure calcium pyroantimonate. However, in myocytes showing the well-established precipitation pattern, the concentration of calcium was estimated to be about two orders of magnitude higher than the native concentration of total intracellular calcium. It is concluded that calcium ions diffuse freely from the extracellular space and from adjacent cells into cells containing antimonate and are precipitated mostly at sites where heterogeneous nucleation is facilitated by intracellular catalysts (biopolymers).As shown by the similar precipitation patterns for the four reactions compared, these catalysts are not specific to any of these reactions and are most probably neither calcium-binding sites nor sites of any one of the enzymes examined in the native cell.  相似文献   

16.
The specificity of the histochemical localization of the calcium activated adenosine triphosphatase (ATPase) activity of the sarcoplasmic reticulum (SR) at pH 7.4 was studied using a calcium-citro-phosphate technique. The latter involves the splitting of ATP by ATPase producing phosphate ions which then react with calcium and citrate to form an insoluble reaction product. This reaction product was detected by both light and electron microscopy. Light microscopic examination showed a darkly stained continuous reticular pattern of reaction product which surrounded individual myofibrils. This reticular pattern of reaction product was distinctly dissimilar to that found when the histochemical reactions for mitochondrial or myofibrillar ATPase were performed. Ultrastructural investigations demonstrated the presence of discrete foci of electron dense reaction product in close association with the membranes of the SR in striated muscle fibres. Only occasional flecks were seen in the vicinity of mitochondria or myofilaments. The possibility is considered that the reticular pattern of staining achieved by the calcium-citro-phosphate technique may reflect the distribution of the "extra ATPase" of the SR, an enzyme implicated in the process of calcium uptake and muscle relaxation.  相似文献   

17.
Summary The intersegmental muscles in the metamorphosing silkmothAntheraea polyphemus were examined by two electron cytochemical procedures for demonstration of calcium compartmentation during the two-day period of degeneration after emergence. Muscle fibres were treated with either oxalate—pyroantimonate, or phosphate—pyroantimonate procedures. The elemental composition of the reaction product arising from the oxalate procedure was determined with electron probe X-ray microanalysis of unstained thin sections by energy dispersive spectrometry and wavelength dispersive spectrometry. The wavelength dispersive data revealed high peaks of calcium and antimony in the electron-dense precipitates. No reaction was obtained in muscles after treatment with the phosphate—pyroantimonate method.Shortly after the emergence of the moth, very few calcium deposits were found in the mitochondria, which also contained amorphous matrix densities. During the rapid lytic phase (17 and 30 h after ecdysis), the mitochondria, autophagic vacuoles sequestering mitochondria, and lysosomal dense bodies issuing from the latter were highly reactive in each muscle fibre.These results demonstrate that the collapse of tracheae (hypoxic conditions) is correlated with the calcium overload of mitochondria when the cell calcium homeostasis is apparently lost. Such calcium overload of the mitochondria appears to cause irreversible damage to these organelles which are then sequestered in autophagic vacuoles. This mitochondrial autophagic process leads to calcium translocation into a lysosomal compartment. We suggest that the calcium lysosomal stores may have a transient function of cell detoxification and stimulation of calcium-dependent degradative processes prior to the final muscle collapse.  相似文献   

18.
Summary Myocardial cells from left ventricles of beating hearts of rats were fixed by immersion in an osmium tetroxide solution containing potassium pyroantimonate to study the electron-microscopic distribution of calcium, the cation being precipitated as an electron-opaque salt (calcium antimonate) by this cytochemical technique. The observed myocytes could be divided into two groups according to their contractile state, evaluated by sarcomere length measurements. In contracted cells (mean sarcomere length 1.43 m) the intramyoflbrillar precipitate was confined to areas of I-bands bordering the A-bands, the intermyofibrillar space showing scarce content in reaction product. Relaxed cells (mean sarcomere length 1.69 m) presented a heavy deposition of reaction product over the sarcomeres, the electron-opaque dots being absent on the H and Z bands. The sarcotubular system and mitochondria were also clearly marked by the reaction product. This second pattern of calcium distribution has not been previously described in heart muscle cells and is interpreted as corresponding to the phase of rise of intracellular calcium which is mediated by membrane depolarization. Our results suggest that different bands of heart sarcomeres show different abilities to bind calcium. The I bands retain the cation even in cells under sustained contraction, probably due to their content in calmodulin; Z and M bands are apparently not involved in calcium sequestration, whereas the content in calcium of the A bands seems to be dependent on the contraction-relaxation cycle of heart myocytes.Supported by Grant HL 06975 from the National Heart, Lung and Blood Institute and AM 18141 from the National Institute of Arthritis, Metabolism and Digestive DiseasesThe authors are grateful to Maria Kapuscinski, Luther B. Joseph, Elisabeth Lawson, Robert Linsmair and Miriam Alojipan for skilled technical assistance  相似文献   

19.
Vinblastine is known to affect secretory and transport functions of ameloblasts. The effects of vinblastine on distribution patterns of membrane-associated calcium and Ca2+,Mg(2+)-ATPase in maturation ameloblasts were investigated cytochemically. The potassium pyroantimonate (PPA) method was used for localizing calcium and a modified Wachstein-Meisel medium was used to localize Ca2+,Mg(2+)-ATPase. Ultrastructural changes induced by vinblastine included dislocated organelles and reduction or elimination of the ruffled border of the ameloblasts. Membrane-associated calcium pyroantimonate deposits were markedly reduced. The intensity of Ca2+,Mg(2+)-ATPase reaction product was also markedly reduced by vinblastine. Concomitant reduction of membrane-associated calcium and Ca2+,Mg(2+)-ATPase lends support to a role for maturation ameloblasts in control of a cyclic pattern of influx of calcium to mineralizing enamel.  相似文献   

20.
Lesion delimitation and resistance of old bean (Phaselous vulgaris L., cv. Red Kidney) plants to Rhizoctonia solani Kühn have been suggested to result from increased calcium pectate formation in walls. Ultrastructural histochemistry was used to determine the site of calcium in tissues adjacent to lesions and in older bean hypocotyls. Hypocotyl lesion tissue and uninoculated control tissue were treated with ammonium oxalate or potassium pyroantimonate during fixation. Treatment with potassium pyroantimonate, but not with oxalate, resulted in granular deposits in cell walls of healthy and lesion tissue. Granules also occurred on the plasma membrane of cells adjacent to lesions and in organelles of damaged cells, but wall granule density was not increased. Cell walls from healthy 24-day-old plants had a greater granule density than those for 8-day-old plants. Wall granules were removed from thin sections with ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Energy dispersive analysis of x-rays also suggested that potassium pyroantimonate localized calcium. Chemical analyses showed that some calcium was retained in tissues after fixation. The results suggest that there are different mechanisms for lesion delimitation and age-induced resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号