首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The isolated retina of the terrestrial crab Ocypode ryderi exhibits a pronounced lactate production in spite of being supplied with sufficient O2 (140 torr). To determine whether this lactate production is caused by hypoxic areas in the tissue or represents aerobic glycolysis, oxygen partial pressure and pH measurements with two-channel glass microelectrodes and additional biochemical analyses were carried out on this organ. Distinct profiles were obtained for O2 partial pressure and pH inside the tissue. At a depth of 200 m different O2 partial pressure levels could be observed depending on the O2 partial pressure in the medium (85 torr at 280 torr and 36 torr at 130 torr, respectively). The extracellular pH displays a similar pattern; it reaches a stable value of 7.15 at 100 m inside the tissue. Lowering bath O2 partial pressure from 280 torr to about 15 torr (hypoxia) induces a decrease of the O2 partial pressure in the tissue with different time-courses for different tissue depths. However, hypoxia did not change the extracellular pH. Addition of antimycin A (100 mol · 1-1) to the medium abolishes the O2 partial pressure gradient and the delayed recovery of the tissue O2 partial pressure after hypoxia. These results and the biochemical data suggest that in the crab retina a high glycolytic activity occurs simultaneously with oxydative carbohydrate degradation (aerobic glycolysis).Abbreviations AEC Atkinson energy charge - DC bioelectric potential - dw dry weight - HEPES N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulphonic acid] - PCO2 carbon dioxide partial pressure - PO2 oxygen partial pressure - P tO2 oxygen partial pressure inside the tissue - P mO2 oxygen partial pressure in the medium - pHt pH inside the tissue - pHm pH in the superfusion medium  相似文献   

2.
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species   总被引:39,自引:0,他引:39  
Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.Abbreviations RuP2 ribulose bisphosphate - PGA 3-phosphoglycerate - C=p(CO2) partial pressure of CO2 - O=p(O2) partial pressure of O2 - PCR photosynthetic carbon reduction - PCO photorespiratory carbon oxidation  相似文献   

3.
Susanne von Caemmerer 《Planta》1989,178(4):463-474
A model of leaf, photosynthesis has been developed for C3–C4 intermediate species found in the generaPanicum, Moricandia, Parthenium andMollugo where no functional C4 pathway has been identified. Model assumptions are a functional C3 cycle in both mesophyll and bundle-sheath cells and that glycine formed in the mesophyll, as a consequence of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco, EC 4.1.1.39), diffuses to the bundle sheath, where most of the photorespiratory CO2 is released. The model describes the observed gas-exchange characteristics of these C3–C4 intermediates, such as low CO2-compensation points () at an O2 pressure of 200 mbar, a curvilinear response of to changing O2 pressures, and typical responses of CO2-assimilation rate to intercellular CO2 pressure. The model predicts that bundle-sheath CO2 concentration is highest at low mesophyll CO2 pressures and decreases as mesophyll CO2 pressure increases. A partitioning of 5–15% of the total leaf Rubisco into the bundle-sheath cells and a bundlesheath conductance similar to that proposed for C4 species best mimics the gas-exchange results. The model predicts C3-like carbon-isotope discrimination for photosynthesis at atmospheric levels of CO2, but at low CO2 pressures it predicts a higher discrimination than is typically found during C3 photosynthesis at lower CO2 pressures.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate - p(CO2) partial pressure of CO2 - p(O2) partial pressure of O2. See also p. 471  相似文献   

4.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

5.
Kolla VA  Vavasseur A  Raghavendra AS 《Planta》2007,225(6):1421-1429
The presence of 2 mM bicarbonate in the incubation medium induced stomatal closure in abaxial epidermis of Arabidopsis. Exposure to 2 mM bicarbonate elevated the levels of H2O2 in guard cells within 5 min, as indicated by the fluorescent probe, dichlorofluorescein diacetate (H2DCF-DA). Bicarbonate-induced stomatal closure as well as H2O2 production were restricted by exogenous catalase or diphenylene iodonium (DPI, an inhibitor of NAD(P)H oxidase). The reduced sensitivity of stomata to bicarbonate and H2O2 production in homozygous atrbohD/F double mutant of Arabidopsis confirmed that NADP(H) oxidase is involved during bicarbonate induced ROS production in guard cells. The production of H2O2 was quicker and greater with ABA than that with bicarbonate. Such pattern of H2O2 production may be one of the reasons for ABA being more effective than bicarbonate, in promoting stomatal closure. Our results demonstrate that H2O2 is an essential secondary messenger during bicarbonate induced stomatal closure in Arabidopsis.  相似文献   

6.
Miscanthus × giganteus is a source of platform chemicals and bioethanol through fermentation. Cinnamates in leaves and stems were analysed by LC–ESI-MSn. Free phenols were extracted and separated chromatographically. More than 20 hydroxycinnamates were identified by UV and LC–ESI-MSn. Comparative LC–MS studies on the leaf extract showed isomers of O-caffeoylquinic acid (3-CQA, 4-CQA and 5-CQA), O-feruloylquinic acid (3-FQA, 4-FQA and 5-FQA) and para-coumaroylquinic acid (3-pCoQA and 5-pCoQA). Excepting 3-pCoQA, all were also detected in stem. 5-CQA dominated in leaf; a mandelonitrile–caffeoylquinic acid dominated in stem. Three minor leaf components were distinguished by fragmentation patterns in a targetted MS2 experiment as dicaffeoylquinic acid isomers. Others (Mr 516) were tentatively identified as hexosylcaffeoyl-quinates. Three positional isomers of O-caffeoylshikimic acid were minor components. p-Hydroxybenzaldehyde was also a major component in stem. This is the first report of the hydroxycinnamic acid profile of leaves and stems of M. × giganteus.  相似文献   

7.
Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the -Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the -subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.  相似文献   

8.
A. Brooks  G. D. Farquhar 《Planta》1985,165(3):397-406
Responses of the rate of net CO2 assimilation (A) to the intercellular partial pressure of CO2 (p i ) were measured on intact spinach (Spinacia oleracea L.) leaves at different irradiances. These responses were analysed to find the value of p i at which the rate of photosynthetic CO2 uptake equalled that of photorespiratory CO2 evolution. At this CO2 partial pressure (denoted ), net rate of CO2 assimilation was negative, indicating that there was non-photorespiratory CO2 evolution in the light. Hence was lower than the CO2 compensation point, . Estimates of were obtained at leaf temperatures from 15 to 30°C, and the CO2/O2 specificity of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (E.C. 4.1.1.39) was calculated from these data, taking into account changes in CO2 and O2 solubilities with temperature. The CO2/O2 specificity decreased with increasing temperature. Therefore we concluded that temperature effects on the ratio of photorespiration to photosynthesis were not solely the consequence of differential effects of temperature on the solubilities of CO2 and O2. Our estimates of the CO2/O2 specificity of RuBP carboxylase/oxygenase are compared with in-vitro measurements by other authors. The rate of nonphotorespiratory CO2 evolution in the light (R d ) was obtained from the value of A at . At this low CO2 partial pressure, R d was always less than the rate of CO2 evolution in darkness and appeared to decrease with increasing irradiance. The decline was most marked up to about 100 mol quanta m-2 s-1 and less marked at higher irradiances. At one particular irradiance, however, R d as a proportion of the rate of CO2 evolution in darkness was similar in different leaves and this proportion was unaffected by leaf temperature or by [O2] (ambient and greater). After conditions of high [CO2] and high irradiance for several hours, the rate of CO2 evolution in darkness increased and R d also increased.Abbreviations and symbols A rate of net CO2-assimilation - CO2 compensation point - CO2 compensation point in the absence of R d - p i intercellular partial pressure of CO2 - R d (day respiration) rate of non-photorespiratory CO2 evolution in the light - R n (night respiration) rate of CO2 evolution in darkness - RuBP ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase  相似文献   

9.
A near isogenic line (NIL) of Brassica oleracea var. botrytis with resistant and susceptible lines C712 and C731, was used in this study. More than 100 differentially expressed cDNA fragments were obtained from black rot resistant cauliflower plants obtained using cDNA-amplified fragment length polymorphism (AFLP) after infection with the pathogen. Thirteen of these fragments were cloned and subjected to reverse Northern blot analysis using both infected and control cDNA pools. Two positive clones, M2 and M6, were isolated. Northern dot blot and Northern blot analyses showed that M2 was constitutively expressed, whereas M6 contained a gene that was differentially expressed during pathogen infection. Moreover, M6 cDNA fragment was also highly expressed 16–24 h after H2O2 treatment. Southern blots showed that M6 is a single copy gene in the cauliflower genome, and encodes a protein with 84 % homology to gene on Arabidopsis chromosome 1. The deduced M6 protein has 91 % positive homology with the Arabidopsis 2A6 protein, which regulates ethylene synthesis; 76 % homology with a 1-aminocyclopropane-1-carboxylate oxidase (ACO), the last enzyme in ethylene synthesis; and 70 % homology with an ethylene induced DNA binding factor. These results suggest that M6 gene fragment is a new H2O2 downstream defense related gene fragment and can be induced by Xanthomonas campestris pv. campestris and H2O2.  相似文献   

10.
The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PEP phosphoenolpyruvate - RrBP ribulose-1,5-bisphosphate - TCA tricarboxylic acid cycle  相似文献   

11.
NO (nitric oxide) and H2O2 (hydrogen peroxide) are important signaling molecule in plants. Brassica napus L. was used to understand oligochitosan inducing production of NO (nitric oxide) and H2O2 (hydrogen peroxide) and their physiological function. The result showed that the production of NO and H2O2 in epidermal cells of B. napus L. was induced with oligochitosan by fluorescence microscope. And it was proved that there was an interaction between NO and H2O2 with L-NAME (NG-nitro-l-arg-methyl eater), which is an inhibitor of NOS (NO synthase) in mammalian cells that also inhibits plant NO synthesis, and CAT (catalase), which is an important H2O2 scavenger, respectively. It was found that NO and H2O2 induced by oligochitosan took part in inducing reduction in stomatal aperture and LEA protein gene expression of leaves of B. napus L. All these results showed that oligochitosan have potential activities of improving resistance to water stress.  相似文献   

12.
Thiobacillus neapolitanus grown in minerals medium in a thiosulfate-limited chemostat excreted 15% of all the carbon dioxide fixed as 14C-organic compounds at a dilution rate (D) of 0.03 h-1. At D=0.36 h-1 this excretion was 8.5%. Up to a D of 0.2h-1 glycolate was the major excretion product. Glycolate excretion was maximal at a pO2 of 100% air saturation (a.s.) and not detectable at a pO2 of 5% (a.s.). Increasing the pCO2 of the gassing mixture to 5% (v/v), at a pO2 of 50% a.s. resulted in a lowering of the glycolate excretion from 3.5% of the total CO2 fixed to 1.8%. These results indicate that glycolate excretion in T. neapolitanus is due to oxygenase activity of D-ribulose-1,5-bisphosphate carboxylase. HPMS (2-pyridylhydroxymethanesulfonate), an inhibitor of glycolate metabolism, did not stimulate the glycolate production in T. neapolitanus. Glycolate excretion was not observed in thiosulfate-limited chemostat cultures of the obligately chemolithotrophic Thiomicrospira pelophila or in thiosulfate- or formate-grown cultures of the facultatively chemolithotrophic Thiobacillus A2.Abbreviation HPMS 2-pyridylhydroxymethanesulfonate  相似文献   

13.
S. B. Ku  G. E. Edwards 《Planta》1980,147(4):277-282
In the C4 plant, Amaranthus graecizans, increasing [O2] from 2% up to 100% inhibited photosynthesis, quantum yield, and the carboxylation efficiency, and increased the CO2 compensation point () from 2 to about 12 l/l. The O2 inhibition of photosynthesis was fully reversible. When changing from 2.5 to 40% O2 and vice versa, about 1 h was required for full equilibration with an O2 inhibition of 18%; whereas in wheat, a C3 species, inhibition of photosynthesis and its reversal occurs within minutes after changing [O2], resulting in 63% inhibition of photosynthesis by 45% O2. These differences in O2 inhibition between a C4 and C3 species can be explained by high diffusive resistance across bundle-sheath cells of C4 plants and the increased CO2/O2 ratio in bundle-sheath cells which is the consequence of the C4 cycle. In A. graecizans, increased with increasing [O2] but tended to reach a maximum at relatively high O2 levels. The lack of a linear increase in as previously observed for C3 species indicates that a considerable amount of photorespired CO2 may be re-fixed with increasing levels of O2. In comparison to previous reports with other C4 species, photosynthesis of A. graecizans shows greater sensitivity to O2, with a noticeable inhibition occurring with shifts from 2 to 21% O2. A. graecizans has characteristics of other C4 species with respect to Kranz anatomy, localization of PEP carboxylase in mesophyll cells and RuBP carboxylase in bundle-sheath cells, and little fractionation among carbon isotopes during CO2 fixation. The basis for the higher sensitivity of photosynthesis of A. graecizans to O2 may be based upon a lower diffusive resistance of gases across bundle-sheath cells than in some other C4 species.Abbreviations CE carboxylation efficiency - RuBP ribulose-1,5-bisphosphate - CO2 compensation point  相似文献   

14.
O3 concentrations in the troposphere are rising and those in the stratosphere decreasing, the latter resulting in higher fluxes of solar ultraviolet-B (UV-B) radiation to the earth's surface. We assessed whether the fluxes of CO2 and CH4 are altered by enhanced UV-B radiation or elevated tropospheric O3 concentrations in boreal peatland microcosms (core depth 40 cm, diameter 10.5 cm) with different vegetation cover. At the end of the UV-B experiment which lasted for a growing season, net CO2 exchange (NEE) and dark ecosystem respiration (R TOT) were sevenfold higher, and CH4 efflux 12-fold higher, in microcosms with intact vegetation dominated by Eriophorum vaginatum L. and Sphagnum spp., compared to microcosms from which we removed E. vaginatum. Vegetation treatment had minor effects on CH4 production and consumption potentials in the peat, suggesting that the large difference in CH4 efflux is mainly due to efficient CH4 transport via the aerenchyma of E. vaginatum. Ambient UV-B supplemented with 30% and elevated O3 concentrations (100 and 200 ppb, for 7 weeks) significantly increased R TOT in both vegetation treatments. Elevated O3 concentrations reduced NEE over time, while UV-B had no clear effects on the fluxes of CO2 or CH4 in the cloudy summer of the study. Field experiments are needed to assess the significance of increasing UV-B radiation and elevated tropospheric O3 concentration on peatland gas exchange in the long-term.  相似文献   

15.
Crustaceans frequently encounter hypoxic water and have evolved a variety of compensatory mechanisms to deal with low O2 conditions. Typically, large decapod crustaceans attempt to maintain cardiac output by increasing stroke volume to compensate for the hypoxia-induced bradycardia. Grass shrimp (Palaemonetes pugio), small hypoxic tolerant decapod crustaceans, were used to investigate cardiac responses to hypoxia in a smaller crustacean using videomicroscopy and dimensional analysis techniques. In addition, these techniques were compared to the more established dye dilution technique for calculation of cardiac output. No significant difference was found between the two methods for determining cardiac output in grass shrimp. Cardiac parameters (heart rate fH, stroke volume VS, and cardiac output Vb) were monitored in grass shrimp exposed to progressive hypoxia (PO2s=20, 13.3, 10, 5.3, and 2 KPa O2). Shrimp exhibit a cardiac response to hypoxia that is atypical when compared to larger crustaceans. Cardiac output was maintained until water PO2 fell below 10 KPa O2. This maintenance of Vb is consistent in both large and small decapods, however the mechanism differs. In grass shrimp, VS was PO2 dependent and declined significantly while fH increased significantly when PO2 was reduced to 13.3 KPa O2.  相似文献   

16.
Subadult Penaeus monodon (21.03±3.19 g) were exposed individually in sea water (30 mg·ml-1) to 0.02 (control), 1.04, 5.02, 10.11 and 20.06 mg·l-1 nitrite-N for 24h. Hemolymph pH, partial pressures of oxygen and carbon dioxide, bicarbonate concentration, oxyhemocyanin and protein levels, and whole animal ammonia-N excretion and nitrite-N uptake were determined. Ammonia-N excretion and hemolymph oxygen partial pressure increased, whereas hemolymph pH, HCO 3 - , oxyhemocyanin, protein and the ratio of oxyhemocyanin/protein levels decreased with increasing ambient nitrite-N. It is suggested that accumulated nitrite of P. monodon following exposure to ambient nitrite causes reduction of oxyhemocyanin, protein and the ratio of oxyhemocyanin/protein in the hemolymph, and affects nitrogen metabolism and acid-base balance at low hemolymph pH.Abbreviations bw body weight - EC50 concentration reducing growth rate by 50% that of controls - LC50 median lethal concentration - nitrite-N nitrite concentration measured as nitrogen - PO2 partial pressure of O2 in hemolymph - PCO2 partial pressure of CO2 in hemolymph - sw sea water - ww wet weight  相似文献   

17.
Xu L  Guo C  Wang F  Zheng S  Liu CZ 《Bioresource technology》2011,102(21):10047-10051
A simple and rapid harvesting method by in situ magnetic separation with naked Fe3O4 nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe3O4 nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe3O4 nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.  相似文献   

18.
The kinetics of oxygen utilization by the microaerophile Campylobacter sputorum subspecies bubulus was studied. With formate as substrate two enzyme systems were found to be responsible for electron transfer between formate and oxygen. In the case of lactate oxidation one enzyme system could account for the activity measured. One of the formateoxidizing systems possessed a high affinity for oxygen [K m(O2)=approx. 4M O2]. From inhibitor studies it was concluded that a respiratory chain was involved in its activity. Respiration by this system must be responsible for proton translocation and electron transport-linked phosphorylation at formate oxidation. The other enzyme system had an extremely low affinity for oxygen [K m (O2)=approx. 1 mM O2]. It was tentatively identified as the H2O2-producing formate oxidase previously found in C. sputorum. The H2O2 production by this enzyme is implicated in an explanation of the microaerophilic nature of C. sputorum. Sensitivity of formate dehydrogenase to H2O2 was demonstrated. The influence of the formate concentration on aerobic formate oxidation was determined. The pH- and temperature dependencies of oxygen uptake with formate as substrate were examined at airsaturation and at a low dissolved oxygen tension.Abbreviations TL medium tryptose-lactate medium - TF medium tryptose-formate medium - HQNO 2-n-heptyl-4-hydroxyquinoline N-oxide - SHAM salicylhydroxamic acid - DCPIP 2,6-dichlorophenolindophenol  相似文献   

19.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   

20.
C. K. M. Rathnam 《Planta》1979,145(1):13-23
The potential for glycolate and glycine metabolism and the mechanism of refixation of photorespiratory CO2 in leaves of C4 plants were studied by parallel inhibitor experiments with thin leaf slices, different leaf cell types and isolated mitochondria of C3 and C4 Panicum species. CO2 evolution by leaf slices of P. bisulcatum, a C3 species, fed glycolate or glycine was light-independent and O2-sensitive. The C4 P. maximum and P. miliaceum leaf slices fed glycolate or glycine evolved CO2 in the dark but not in the light. In C4 species, dark CO2 evolution was abolished by the addition of phosphoenolpyruvate (PEP)4. The addition of maleate, a PEP carboxylase inhibitor, resulted in photorespiratory CO2 efflux by C4 leaf slices in the light also. However, PEP and maleate had no effect on either glycolate-dependent O2 uptake by the C4 leaf slices or on glycolate and glycine metabolism in C3 leaf slices. The rate of photorespiratory CO2 evolution in the C3 Panicum species was 3 times higher than that observed with the C4 species. The ratio of glycolate-dependent CO2 evolution to O2 uptake in both groups was 1:2. Isolated C4 mesophyll protoplasts or their mitochondria did not metabolize glycolate or glycine. However, both C3 mesophyll protoplasts and C4 bundle sheath strands readily metabolized glycolate and glycine in a light-independent, O2-sensitive manner, and the addition of PEP or maleate had no effect. C4 bundle sheath- and C3-mitochondria were capable of oxidizing glycine. This oxidation was linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport inhibitors. C4 bundle sheath- and C3-mitochondrial glycine decarboxylation was stimulated by oxaloacetate and NAD had no effect. In marked contrast, mitochondria isolated from C4 mesophyll cells were incapable of oxidizing or decarboxylating added glycine. The results suggest that in leaves of C4 plants bundle sheath cells are the primary site of O2-sensitive photorespiratory CO2 evolution and the PEP carboxylase present in the mesophyll cells has the Potential for efficiently refixing CO2 before it escapes out of the leaf. The relative role of the PEP carboxylase mediated CO2 pump and reassimilation of photorespiratory CO2 are discussed in relation to the apparent lack of photorespiration in leaves of C4 species.Abbreviations BSA bovine serum albumin - Chl chlorophyll - PEP phosphoenolpyruvate - Rbu-P 2 ribulose 1,5-bisphosphate - Rib-5-P ribose-5-phosphate - Ru-5-P ribuluse-5-phosphate - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone Journal Series Paper, New Jersey Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号