首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gram-negative bacteria are generally more tolerant to disinfectants than Gram-positive bacteria due to outer membrane (OM) barrier, but the tolerant mechanism is not well characterized. We have utilized comparative proteomic methodologies to characterize the OM proteins of E. coli K-12 K99+ in response to phenol stress and found that nine proteins were altered significantly. They were OM proteins OmpA, FadL, LamB, and OmpT, cytoplasmic-associated proteins AceA and EF-Tu, inner membrane protein AtpB, putative capsid protein Q8FewO, and unknown location protein Dps. They were reported here for the first time to be phenol-tolerant proteins. The alteration and functional characterization of the four OM proteins were further investigated using western blotting, genetically modified strains with gene deletion and gene complementation approaches. Our results characterized the functional OM proteins of E. coli in resistance to phenol, and provide novel insights into the mechanisms of bacterial disinfectant-tolerance and new drug targets for control of phenol-resistant bacteria.  相似文献   

2.
Shigella flexneri is an intracellular pathogen that deploys an arsenal of virulence factors promoting host cell invasion, intracellular multiplication and intra- and inter-cellular dissemination. We have previously reported that the interaction between apyrase (PhoN2), a periplasmic ATP-diphosphohydrolase, and the C-terminal domain of the outer membrane (OM) protein OmpA is likely required for proper IcsA exposition at the old bacterial pole and thus for full virulence expression of Shigella flexneri (Scribano et al., 2014). OmpA, that is the major OM protein of Gram-negative bacteria, is a multifaceted protein that plays many different roles both in the OM structural integrity and in the virulence of several pathogens. Here, by using yeast two-hybrid technology and by constructing an in silico 3D model of OmpA from S. flexneri 5a strain M90T, we observed that the OmpA residues 188EVQ190 are likely essential for PhoN2-OmpA interaction. The 188EVQ190 amino acids are located within a flexible region of the OmpA protein that could represent a scaffold for protein-protein interaction.  相似文献   

3.
Yersinia enterocolitica is a Gram-negative enteric pathogen responsible for a number of gastrointestinal disorders; the most pathogenic bio-serotype is 1B/O: 8. In this study, we compared the antigenicity of the outer membrane proteins and proteomics of the whole-cell proteins of a pathogenic bio-serotype 2/O: 9 isolated in China and a bio-serotype 1B/O: 8 strain isolated in Japan. Using two-dimensional gel electrophoresis, we showed that the outer membrane proteins A (OmpA), C (OmpC) and F (OmpF) were the major antigens for both strains, although proteins located on the bacterial cell membrane and enzymes involved in energy metabolism were also identified as antigenic. We compared the whole-cell proteins of the two strains cultured at 25°C and 37°C and found portions of the outer membrane proteins (OmpX, OmpF and OmpA) were downregulated when the bacteria were cultured at 37°C, whereas urease subunit gamma (UreA), urease subunit alpha (UreC) and urease accessory protein (UreE), which are involved in urease synthesis, were upregulated when the bacteria were grown at 37°C. These observations will lay a foundation to selection of diagnostic markers for pathogenic Yersinia enterocolitica, and maybe contribute to choose the vaccine targets.  相似文献   

4.
A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein–protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein–protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.  相似文献   

5.
Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.  相似文献   

6.
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.  相似文献   

7.
Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis. The outer membrane protein A (OmpA) assembles a beta-barrel structure having four surface-exposed loops in E. coli outer membrane. OmpA of meningitis-causing E. coli K1 is shown to contribute to invasion of the human brain microvascular endothelial cells (HBMEC), the main cellular component of the blood-brain barrier (BBB). However, the direct evidence of OmpA protein interacting with HBMEC is not clear. In this study, we showed that OmpA protein, solubilized from the outer membrane of E. coli, adhered to HBMEC surface. To verify OmpA interaction with the HBMEC, we purified N-terminal membrane-anchoring beta-barrel domain of OmpA and all surface-exposed loops deleted OmpA proteins, and showed that the surface-exposed loops of OmpA were responsible for adherence to HBMEC. These findings indicate that the OmpA is the adhesion molecule with HBMEC and the surface-exposed loops of OmpA are the determinant of this interaction.  相似文献   

8.
9.
Rickettsia conorii, a member of the spotted fever group (SFG) of the genus Rickettsia and causative agent of Mediterranean spotted fever, is an obligate intracellular pathogen capable of infecting various mammalian cell types. SFG rickettsiae express two major immunodominant s urface c ell a ntigen (Sca) proteins, OmpB (Sca5) and OmpA (Sca0). While OmpB‐mediated entry has been characterized, the contribution of OmpA has not been well defined. Here we show OmpA expression in Escherichia coli is sufficient to mediate adherence to and invasion of non‐phagocytic human endothelial cells. A recombinant soluble C‐terminal OmpA protein domain (954–1735) with predicted structural homology to the Bordetella pertussis pertactin protein binds mammalian cells and perturbs R. conorii invasion by interacting with several mammalian proteins including β1 integrin. Using functional blocking antibodies, small interfering RNA transfection, and mouse embryonic fibroblast cell lines, we illustrate the contribution of α2β1 integrin as a mammalian ligand involved in R. conorii invasion of primary endothelial cells. We further demonstrate that OmpA‐mediated attachment to mammalian cells is in part dependent on a conserved non‐continuous RGD motif present in a predicted C‐terminal ‘pertactin’ domain in OmpA.Our results demonstrate that multiple adhesin–receptor pairs are sufficient in mediating efficient bacterial invasion of R. conorii.  相似文献   

10.
The 325-residue outer membrane protein, OmpA, of Escherichia coli, like most other outer membrane proteins with known sequence, contains no long stretch of hydrophobic amino acids. A synthetic oligonucleotide, encoding the sequence Leu-Ala-Leu-Val, was inserted four times between the codons for amino acid residues 153 and 154 and two, three, or four times between the codons for residues 228 and 229, resulting in the OmpA153-4, OmpA-228-2, -3, and -4 proteins, respectively. In the first case, the lipophilic sequence anchored the protein in the plasma membrane. In the OmpA228 proteins, 16 but not 12 or 8 lipophilic residues most likely also acted as an anchor. By removal of the NH2-terminal signal peptide, the function of the insert in OmpA153-4 was converted to that of a signal-anchor sequence. Possibly due to differences in amino acid sequences surrounding the insert, no signal function was observed with the insert in OmpA228-4. Production of the OmpA153-4 protein, with or without the NH2-terminal signal sequence, resulted in a block of export of chromosomally encoded OmpA. Clearly, long hydrophobic regions are not permitted within proteins destined for the bacterial outer membrane, and these proteins, therefore, have had to evolve another mechanism of membrane assembly.  相似文献   

11.
Park SB  Jang HB  Nho SW  Cha IS  Hikima J  Ohtani M  Aoki T  Jung TS 《PloS one》2011,6(3):e17629
Infection with Edwardsiella tarda, a gram-negative bacterium, causes high morbidity and mortality in both marine and freshwater fish. Outer membrane vesicles (OMVs) released from gram-negative bacteria are known to play important roles in bacterial pathogenesis and host immune responses, but no such roles for E. tarda OMVs have yet been described. In the present study, we investigated the proteomic composition of OMVs and the immunostimulatory effect of OMVs in a natural host, as well as the efficacy of OMVs when used as a vaccine against E. tarda infection. A total of 74 proteins, from diverse subcellular fractions, were identified in OMVs. These included a variety of important virulence factors, such as hemolysin, OmpA, porin, GAPDH, EseB, EseC, EseD, EvpC, EvpP, lipoprotein, flagellin, and fimbrial protein. When OMVs were administrated to olive flounder, significant induction of mRNAs encoding IL-1β, IL-6, TNFα, and IFNγ was observed, compared with the levels seen in fish injected with formalin-killed E. tarda. In a vaccine trial, olive flounder given OMVs were more effectively protected (p<0.0001) than were control fish. Investigation of OMVs may be useful not only for understanding the pathogenesis of E. tarda but also in development of an effective vaccine against edwardsiellosis.  相似文献   

12.
The interaction of spin-labeled lipids with beta-barrel transmembrane proteins has been studied by the electron spin resonance (ESR) methods developed for alpha-helical integral proteins. The outer membrane protein OmpA and the ferrichrome-iron receptor FhuA from the outer membrane of Escherichia coli were reconstituted in bilayers of dimyristoylphosphatidylglycerol. The ESR spectra from phosphatidylglycerol spin labeled on the 14-C atom of the sn-2 chain contain a second component from motionally restricted lipids contacting the intramembranous surface of the beta-barrel, in addition to that from the fluid bilayer lipids. The stoichiometry of motionally restricted lipids, 11 and 32 lipids/monomer for OmpA and FhuA, respectively, is constant irrespective of the total lipid/protein ratio. It is proportional to the number of transmembrane beta-strands, eight for OmpA and 22 for FhuA, and correlates reasonably well with the intramembranous perimeter of the protein. Spin-labeled lipids with different polar headgroups display a differential selectivity of interaction with the two proteins. The more pronounced pattern of lipid selectivity for FhuA than for OmpA correlates with the preponderance of positively charged residues facing the lipids in the extensions of the beta-sheet and shorter interconnecting loops on the extracellular side of FhuA.  相似文献   

13.
Dissection of a type VI secretion system in Edwardsiella tarda   总被引:1,自引:0,他引:1  
Bacterial pathogens use different protein secretion systems to deliver virulence factors. Recently, a novel secretion system was discovered in several Gram-negative bacterial pathogens, and was designated as the type VI secretion system (T6SS). In Edwardsiella tarda, a partial E. tardavirulent protein (EVP) gene cluster was implicated in protein secretion. Here, we identified the entire EVP cluster as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found. We systematically mutagenized all the 16 EVP genes and found that the secretion of EvpP was dependent on 13 EVP proteins including EvpC (a homologue of Hcp) and EvpI but not EvpD and EvpJ. All EVP mutants except DeltaevpD were attenuated in blue gourami fish. The 16 EVP proteins can be grouped according to their functions and cellular locations. The first group comprises 11 non-secreted and possibly intracellular apparatus proteins. Among them, EvpO, a putative ATPase which contained a Walker A motif, showed possible interactions with three EVP proteins (EvpA, EvpL and EvpN). The second group includes three secreted proteins (EvpC, EvpI and EvpP). The secretion of EvpC and EvpI is mutually dependent, and they are required for the secretion of EvpP. The interaction between EvpC and EvpP was demonstrated. Lastly, two proteins (EvpD and EvpJ) are not required for the T6SS-dependent secretion.  相似文献   

14.
Yang JN  Wang C  Guo C  Peng XX  Li H 《Molecular bioSystems》2011,7(11):3087-3093
Escherichia coli growth is a complicated process involved in many factors including the utilization of glucose. It has been reported that E. coli cell growth rate is closely related with glucose concentrations in the cell culture medium. However, the protein regulation networks in response to glucose concentration changes are largely unknown. In the present study, a sub-proteomic methodology has been utilized to characterize alterations of E. coli OM proteins in response to 0.02, 0.2 and 2% concentrations of glucose. In comparison with E. coli cells treated with 0.2% glucose concentration, downregulation of FhuE, FepA, CirA, TolC and OmpX and upregulation of LamB, FadL, OmpF, OmpT and Dps were detected in the E. coli cells treated with 0.02% glucose, and a decrease of TolC, LamB, OmpF, OmpT, OmpX, Dps and elevation of FhuE, FepA, CirA, YncD, FadL and MipA were found in 2% glucose. TolC, LamB and OmpT showed more important roles than other altered OM proteins. Furthermore, the interaction among these altered OM proteins was investigated, and protein interaction networks were characterized. In the networks, all proteins were interacted and regulated by others. TolC, LamB and Dps were the top three proteins that regulated more proteins than others, whereas CirA and OmpT were the top two proteins that were regulated by others. The protein networks could be modified correspondingly with the changes of glucose concentrations. The modifications included the addition of new OM proteins or the change of regulation direction. These findings suggest the important roles of the bacterial OM protein network in E. coli's responses to glucose concentration changes and other environment stresses.  相似文献   

15.
Liu Y  Zhang H  Liu Y  Li H  Peng X 《Journal of Proteomics》2012,75(4):1119-1128
Edwardsiellosis caused by Edwardsiella tarda is a frequent occurrence throughout the world and has resulted in extensive losses in aquaculture. However, information regarding to protein-protein interaction between the pathogenic cells and host is not available although the portal of entry of the pathogen is determined. In this study, fish gill and bacterial pull-down approaches were used to isolate both bacterial outer membrane proteins that bind to gills and fish gill proteins that interact with bacterial cells, respectively. Eight interacting bacterial proteins and twelve interacting fish proteins were obtained. The genes of seven bacterial proteins were cloned and expressed for preparation of antibodies. The prepared antibodies were used to investigate protein-protein interactions between bacterial cells and fish gills. Five heterogeneous protein-protein interactions were determined. Moreover, the protective ability of three of the bacterial recombinant proteins, selected at random, was investigated in a mouse model where they showed significant protection. The gill proteins were highly homologous proteins with from humans and other animals where they are known to be involved in host immunity. These findings indicate that the heterogeneous interactome has significantly biological significance. Our results demonstrate a way to determine and understand the heterogeneous interaction between of E. tarda and gills.  相似文献   

16.
The white-blooded Antarctic icefish is the only known vertebrate lacking oxygen-transporting haemoglobins. Fish skin mucus, as the first line of defence against pathogens, can reflect fish welfare. In this study, we analysed the skin mucus proteome profiles of the two Antarctic fish species, the white-blooded Antarctic icefish, Chionodraco hamatus, and the red-blooded Antarctic fish, Notothenia coriiceps, unfolding the different proteins by liquid chromatography coupled with tandem mass spectrometry isobaric tags for relative and absolute quantitation (iTRAQ) technology. Of the 4444 totally identified proteins, 227 differentially expressed proteins (DEPs) were found in the comparison between C. hamatus and N. coriiceps, of which 121 were upregulated and 106 were downregulated in the icefish. In the Kyoto Encyclopedia of Genes and Genomes pathway annotation, we found two pathways “Legionellosis” and “Complement and coagulation cascades” were significantly enriched, among of which innate immune candidate proteins such as C3, CASP1, ASC, F3 and C9 were significantly upregulated, suggesting their important roles in C. hamatus immune system. Additionally, the DEP protein–protein interaction network analysis and “Response to stress” GO category provided candidate biomarkers for deep understanding of the distinct immune response of the two Antarctic fish underlying the cold adaptation.  相似文献   

17.
In an effort to devise a safer and more effective vaccine delivery system, outer membrane vesicles (OMVs) were engineered to have properties of intrinsically low endotoxicity sufficient for the delivery of foreign antigens. Our strategy involved mutational inactivation of the MsbB (LpxM) lipid A acyltransferase to generate OMVs of reduced endotoxicity from Escherichia coli (E. coli) O157:H7. The chromosomal tagging of a foreign FLAG epitope within an OmpA-fused protein was exploited to localize the FLAG epitope in the OMVs produced by the E. coli mutant having the defined msbB and the ompA::FLAG mutations. It was confirmed that the desired fusion protein (OmpA::FLAG) was expressed and destined to the outer membrane (OM) of the E. coli mutant from which the OMVs carrying OmpA::FLAG are released during growth. A luminal localization of the FLAG epitope within the OMVs was inferred from its differential immunoprecipitation and resistance to proteolytic degradation. Thus, by using genetic engineering-based approaches, the native OMVs were modified to have both intrinsically low endotoxicity and a foreign epitope tag to establish a platform technology for development of multifunctional vaccine delivery vehicles.  相似文献   

18.
This study profiled the plasma proteins of patients infected by the 2011 H1N1 influenza virus. Differential protein expression was identified in plasma obtained from noninfected control subjects (n = 15) and H1N1‐infected subjects (n = 15). Plasma proteins were separated by a 2DE large gel system and identified by nano‐ultra performance LC‐MS. Western blot assays were performed to validate proteins. Eight plasma proteins were upregulated and six proteins were downregulated among 3316 plasma proteins in the H1N1‐infected group as compared with the control group. Of 14 up‐ and downregulated proteins, nine plasma proteins were validated by Western blot analysis. Putative protein FAM 157A, leucine‐rich alpha 2 glycoprotein, serum amyloid A protein, and dual oxidase 1 showed significant differential expression. The identified plasma proteins could be potential candidates for biomarkers of H1N1 influenza viral infection. Further studies are needed to develop these proteins as diagnostic biomarkers.  相似文献   

19.
罗布麻(Apocynum venetum L.),是我国宝贵的野生植物种质资源,具有重要的药用价值、生态价值及经济价值。罗布麻虽属于耐盐性较强的植物,但随着生境遭到破坏及土壤盐渍化程度加重,罗布麻的野生种群数量逐渐缩减,探究罗布麻的耐盐性机制,对罗布麻野生种质资源的保护和利用具有重要意义。本研究采用TMT技术对盐胁迫下罗布麻进行定量蛋白质组学研究,对不同时间点差异蛋白进行韦恩发现,11个共有差异蛋白主要富集在蛋白质-FAD连接、转运蛋白活性的负调控、离子跨膜转运蛋白活性的负调节、阴离子跨膜转运的负调控、阴离子通道活性的负调节和噻唑代谢过程等通路。差异蛋白网络互作分析发现,不同胁迫时间的差异蛋白网络互作所得到的蛋白主要以核糖体蛋白为主,其中60S核糖体蛋白L3-2(TRINITY_DN13265_c0_g1_i1_9)在胁迫12 h和24 h的差异蛋白中均为核心蛋白,表明核糖体蛋白在罗布麻响应盐胁迫过程中发挥着重要作用。本研究筛选出罗布麻响应盐胁迫的关键蛋白,拓展了罗布麻盐胁迫应答相关的分子资源,并为罗布麻天然抗逆种质的发掘与利用提供理论依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号