首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE OF REVIEW: Degenerative aortic valve stenosis is a common disease in the elderly, and traditional risk factors for atherosclerotic disease including hyperlipidaemia have been associated with the condition in several studies. This review addresses the role of the various risk factors and the potential for intervention. RECENT FINDINGS: The association of lipid abnormalities such as high lipoprotein(a) levels and the presence of the apolipoprotein E4 allele with aortic stenosis, as well as the presence of several inflammatory markers both in plasma and in surgically excised valves, suggest that the stenotic process is driven by many of the same factors behind atherosclerosis. The aortic valves of animals fed a cholesterol-rich diet exhibit many characteristics in common with the early stages of aortic stenosis. This opens up the potential of retarding the process through intervention strategies. SUMMARY: Hyperlipidaemia is associated with degenerative aortic valve stenosis, and the disease resembles the inflammatory process of atherosclerosis. Randomized controlled clinical trials will be needed to demonstrate the role of lipid intervention in patients with this condition.  相似文献   

2.
Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression.  相似文献   

3.
One of the major challenges in cardiovascular medicine is to identify candidate biomarker proteins. Secretome analysis is particularly relevant in this search as it focuses on a subset of proteins released by a cell or tissue under certain conditions. The sample can be considered as a plasma subproteome and it provides a more direct approximation to the in vivo situation. Degenerative aortic stenosis is the most common worldwide cause of valve replacement. Using a proteomic analysis of the secretome from aortic stenosis valves we could identify candidate markers related to this pathology, which may facilitate early diagnosis and treatment. For this purpose, we have designed a method to validate the origin of secreted proteins, demonstrating their synthesis and release by the tissue and ruling out blood origin. The nLC-MS/MS analysis showed the labeling of 61 proteins, 82% of which incorporated the label in only one group. Western blot and selective reaction monitoring differential analysis, revealed a notable role of the extracellular matrix. Variation in particular proteins such as PEDF, cystatin and clusterin emphasizes the link between aortic stenosis and atherosclerosis. In particular, certain proteins variation in secretome levels correlates well, not only with label incorporation trend (only labeled in aortic stenosis group) but, more importantly, with alterations found in plasma from an independent cohort of samples, pointing to specific candidate markers to follow up in diagnosis, prognosis, and therapeutic intervention.Degenerative aortic stenosis (AS)1 is currently the most common cause of valve replacement in Western countries, and a significant increase in its prevalence is expected in the future because of increasing longevity (1). At the same time that our population age increases it can be expected that cardiac valve disease, and AS in particular, will increase in parallel. More and more, clinicians are seeing patients with symptomatic severe AS who are very advanced in age and have severe comorbidities or significant frailty, making operative intervention either impossible or of very high risk in the eyes of the cardiac surgeon. For this reason, the need of new diagnostic and prognostic methods, together with the urgent need of new drugs for therapy, has increased making a correct diagnosis in the early stages of the disease thereby reducing the cost burden to society. Several lines of evidence have demonstrated that degenerative AS is an active process in which inflammation plays a key role. As such, preventative approaches similar to those used in coronary artery disease (CAD) may be also applicable to AS (2, 3, 4, 5, 6). However, recent studies reported no reduction in later states of AS disease using statins, which significantly benefit patients with atherosclerosis (7, 8). Hence, further research is required to elucidate the pathogenic mechanism of this prevalent disease and to identify the similarities and differences in relation to atherosclerosis.Proteomics has emerged as a particularly suitable platform for the nonbiased analysis of proteins involved in the pathogenesis of various diseases, such as AS (9, 10). This type of approach provided the basis for the development of biomarkers to detect patients at risk of developing degenerative AS. Plasma and serum have been the main source used in proteomic studies to identify candidate protein biomarkers, followed by tissue and cell samples. However, the use of plasma and serum is hampered by their complex nature and by the large dynamic range of protein concentrations, which may favor the detection of abundant proteins at the expense of those present at lower concentrations (11, 12). As such, the aortic valve secretome has emerged as an attractive target to further understand the AS pathogenic process. Tissue secretomes provide a more accurate model of the in vivo situation and, by minimizing serum contaminants, they facilitate the detection of low abundance proteins secreted into the blood (13).In the present study, aortic valves from AS patients and nonaffected control subjects were cultured and the secretome analyzed by nLC-MS/MS. The addition of labeled amino acids to the culture media enabled the origin of the secreted proteins to be validated (truly secreted versus serum contaminants) and provided with information related to the dynamics of their synthesis and release from tissue.  相似文献   

4.
Calcific aortic stenosis (CAS) is a pathological condition of the aortic valve characterized by dystrophic calcification of the valve leaflets. Despite the high prevalence and mortality associated with CAS, little is known about its pathogenetic mechanisms. Characterized by progressive dystrophic calcification of the valve leaflets, the early stages of aortic valve degeneration are similar to the active inflammatory process of atherosclerosis including endothelial disruption, inflammatory cell infiltration, lipid deposition, neo-vascularization and calcification. In the vascular system, the endothelium is an important regulator of physiological and pathological conditions; however, the contribution of endothelial dysfunction to valvular degeneration at the cellular and molecular level has received little attention. Endothelial cell (EC) activation and neo-vascularization of the cusps characterizes all stages of aortic valvular degeneration from aortic sclerosis to aortic stenosis. Here we reported the role of osteopontin (OPN) in the regulation of EC activation in vitro and in excised tissue from CAS patients and controls. OPN is an important pro-angiogenic factor in several pathologies. High levels of OPN have been demonstrated in both tissue and plasma of patients with aortic valve sclerosis and stenosis. The characterization of valvular ECs as a cellular target for OPN will help us uncover the pathogenesis of aortic valve degeneration and stenosis, opening new perspectives for the prevention and therapy of this prevalent disease.  相似文献   

5.
The prevalence of aortic valve stenosis (AS) is increasing in the aging society. More recently, novel treatments and devices for AS, especially transcatheter aortic valve replacement (TAVR) have significantly changed the therapeutic approach to this disease. Research and development related to TAVR require testing these devices in the calcified heart valves that closely mimic a native calcific valve. However, no animal model of AS has yet been available. Alternatively, animals with normal aortic valve that are currently used for TAVR experiments do not closely replicate the aortic valve pathology required for proper testing of these devices. To solve this limitation, for the first time, we developed a novel polymeric valve whose leaflets possess calcium hydroxyapatite inclusions immersed in them. This study reports the characteristics and feasibility of these valves. Two types of the polymeric valve, i.e., moderate and severe calcified AS models were developed and tested by deploying a transcatheter valve in those and measuring the related hemodynamics. The valves were tested in a heart flow simulator, and were studied using echocardiography. Our results showed high echogenicity of the polymeric valve, that was correlated to the severity of the calcification. Aortic valve area of the polymeric valves was measured, and the severity of stenosis was defined according to the clinical guidelines. Accordingly, we showed that these novel polymeric valves closely mimic AS, and can be a desired cost-saving solution for testing the performance of the transcatheter aortic valve systems in vitro.  相似文献   

6.
7.
The pathogenesis of aortic valve stenosis (AS) is characterized by the accumulation of LDL-derived cholesterol in the diseased valves. Since LDL particles also contain plant sterols, we investigated whether plant sterols accumulate in aortic valve lesions. Serum samples were collected from 82 patients with severe AS and from 12 control subjects. Aortic valves were obtained from a subpopulation of 21 AS patients undergoing valve surgery and from 10 controls. Serum and valvular total cholesterol and noncholesterol sterols were measured by gas-liquid chromatography. Noncholesterol sterols, including both cholesterol precursors and sterols reflecting cholesterol absorption, were detected in serum samples and aortic valves. The higher the ratios to cholesterol of the cholesterol precursors and absorption markers in serum, the higher their ratios in the stenotic aortic valves (r=0.74, P<0.001 for lathosterol and r=0.88, P<0.001 for campesterol). The valvular ratio to cholesterol of lathosterol correlated negatively with the aortic valve area (r= -0.47, P=0.045), suggesting attenuation of cholesterol synthesis with increasing severity of AS. The higher the absorption of cholesterol, the higher the plant sterol contents in stenotic aortic valves. These findings suggest that local accumulation of plant sterols and cholesterol precursors may participate in the pathobiology of aortic valve disease.  相似文献   

8.
Aortic valve stenosis (AS) is the most frequent heart disease after coronary artery disease and arterial hypertension and it is associated with a high incidence of adverse outcomes. Historically, calcific AS has been considered as "degenerative" because it was thought to be the result from aging and "wear and tear" of the aortic valve. However, this perception has changed over the years with the publication of several studies showing that the calcific AS shares many histological similarities with atherosclerosis, thus suggesting that this disease could eventually be modified by lifestyle or pharmacological therapies. Furthermore, recent data support the notion that AS is not an isolated disease uniquely limited to the valve. Indeed, AS is frequently associated with abnormalities of the systemic arterial system, and in particular with reduced arterial compliance, which may have important consequences on the pathophysiology and clinical outcome of this disease. Hence, the assessment of AS severity as well as its therapeutic management should be conducted with the use of a comprehensive evaluation that includes not only the aortic valve but also the systemic arterial system and the left ventricle, since these 3 entities are tightly intricated on both the pathophysiological and hemodynamic standpoints.  相似文献   

9.
Calcific aortic valve disease (CAVD) results in aortic valve stenosis and is one of the most common cardiac diseases in both Western and developing countries. The burden of this disease is expected to increase rapidly in the future, but there are still no relevant pharmacological therapies available and aortic valve replacement remains the sole definite therapy. This review presents an overview of the most common causes of CAVD, followed by current debates and trials related to the onset and progression of this disease. Several differences and similarities between the different causes of CAVD are presented. Additionally, stages of CAVD are compared with stages in atherosclerosis. Finally, future directions for research on CAVD will be discussed.  相似文献   

10.
11.
Calcific aortic valve stenosis is the most common indication for surgical valve replacement. Inflammation appears to be one of the mechanisms involved in aortic valve calcification, and valve interstitial cells seem to contribute to that process. Although Toll-like receptors (TLRs) play an important role in the cellular inflammatory response, it is unknown whether human aortic valve interstitial cells (HAVICs) express functional TLRs. We examined the expression of TLR2 and TLR4 in human aortic valve leaflets and in isolated HAVICs and analyzed the response of cultured HAVICs to the TLR2 and TLR4 agonists peptidoglycan (PGN) and LPS. Abundant TLR2 and TLR4 proteins were found in human aortic valve leaflets and in isolated HAVICs, and both receptors were detected in the membrane and cytoplasm of cultured HAVICs. Stimulation by either PGN or LPS resulted in the activation of the NF-kappaB signaling pathway and the production of multiple proinflammatory mediators, including IL-6, IL-8, and ICAM-1. In addition, stimulation by either PGN or LPS upregulated the expression of bone morphogenetic protein-2 (BMP-2) and Runx2, factors associated with osteogenesis. This study demonstrates for the first time that HAVICs express TLR2 and TLR4 and that stimulation of HAVICs by PGN or LPS induces the expression of proinflammatory mediators and the upregulation of osteogenesis-associated factors. These results suggest that TLR2 and TLR4 may play a role in aortic valve inflammation and stenosis.  相似文献   

12.
Wen  Jun  Gao  Qi  Chen  Jingnan  Li  Xinya  Zhang  Kaiyue  He  Gang  Dai  Min  Song  Pan 《Biomechanics and modeling in mechanobiology》2023,22(4):1379-1394
Biomechanics and Modeling in Mechanobiology - Transcatheter aortic valve implantation (TAVI) is a micro-invasive surgery used to treat patients with aortic stenosis (AS) efficiently. However, the...  相似文献   

13.
14.
The severity index is a new echocardiographic measure that is thought to be an accurate indicator of aortic leaflet pathology in patients with AS. However, it has not been validated against cardiac catheterization or Doppler echocardiographic measures of AS severity nor has it been applied to patients with aortic sclerosis. The purposes of this study were to compare the severity index to invasive hemodynamics and Doppler echocardiography across the spectrum of calcific aortic valve disease, including aortic sclerosis and AS. 48 patients with aortic sclerosis and AS undergoing echocardiography and cardiac catheterization comprised the study population. The aortic valve leaflets were assessed for mobility (scale 1 to 6) and calcification (scale 1 to 4) and the severity index was calculated as the sum of the mobility and calcification scores according to the methods of Bahler et al. The severity index increased with increasing severity of aortic valve disease; the severity indices for patients with aortic sclerosis, mild to moderate AS and severe AS were 3.38 ± 1.06, 6.45 ± 2.16 and 8.38 ± 1.41, respectively. The aortic jet velocity by echocardiography and the square root of the maximum aortic valve gradient by cardiac catheterization correlated well with the severity index (r = 0.84, p < 0.0001; r = 0.84, p < 0.0001, respectively). These results confirm that the severity index correlates with hemodynamic severity of aortic valve disease and may prove to be a useful measure in patients with aortic sclerosis and AS.  相似文献   

15.

Background

Circulating microparticles (MPs) derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.

Methods

In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC) as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC) by computed tomography. Thrombin-antithrombin complex (TATc) levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.

Results

Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs), endothelial-derived MPs (EMPs) and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.

Conclusion

In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.  相似文献   

16.
Degenerative aortic stenosis is the most common worldwide cause of valve replacement. While it shares certain risk factors with coronary artery disease, it is not delayed or reversed by reducing exposure to risk factors (e.g., therapies that lower lipids). Therefore, it is necessary to better understand its pathophysiology for preventive measures to be taken. In this work, aortic valve samples were collected from 20 patients that underwent aortic valve replacement (55% males, mean age of 74 years) and 20 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry, and 35 protein species were clearly increased in aortic valves, including apolipoprotein AI, alpha-1-antitrypsin, serum albumin, lumican, alfa-1-glycoprotein, vimentin, superoxide dismutase Cu-Zn, serum amyloid P-component, glutathione S-transferase-P, fatty acid-binding protein, transthyretin, and fibrinogen gamma. By contrast, 8 protein species were decreased (transgelin, haptoglobin, glutathione peroxidase 3, HSP27, and calreticulin). All of the proteins identified play a significant role in cardiovascular processes, such as fibrosis, homeostasis, and coagulation. The significant changes observed in the abundance of key cardiovascular proteins strongly suggest that they can be involved in the pathogenesis of degenerative aortic stenosis. Further studies are warranted to better understand this process before we can attempt to modulate it.  相似文献   

17.
目的:探讨颈动脉粥样硬化、主动脉瓣膜钙化(aortic valve calcification,AVC)与动脉粥样硬化性肾动脉狭窄(atherosclerotic renal artery stenosis,ARAS)的关系。方法:对我院162例行选择性冠脉造影合并肾动脉造影的患者进行颈动脉超声和超声心动图检查,测量颈动脉内中膜厚度(carotid artery intima-media thickness,CIMT)和主动脉瓣钙化的情况,根据患者是否患有ARAS进行分组,比较两组的性别、年龄、吸烟、病史、血脂水平、CIMT、颈动脉粥样硬化发生率和AVC发生率,计算颈动脉粥样硬化和AVC对ARAS的预测价值。结果:ARAS组高血压病史患者的构成比、胆固醇水平、CIMT、颈动脉粥样硬化发生率、AVC发生率均显著高于对照组,有明显的统计学差异(P0.05)。颈动脉粥样硬化预测ARAS的灵敏度较高,特异度偏低;AVC的灵敏度低,而特异度高;二者联合特异度明显增高。结论:颈动脉粥样硬化、AVC对ARAS的诊断有一定的参考价值,可用于排除诊断。  相似文献   

18.
OBJECTIVES: We tested the hypothesis that the presence of aortic stenosis (AS) is associated with elevation of plasma levels of asymmetric dimethylarginine (ADMA), a physiological inhibitor of nitric oxide synthase, a mediator and marker of endothelial dysfunction and an indicator of incremental cardiovascular risk. BACKGROUND: The presence of aortic sclerosis (ASC), the precursor of AS is independently associated both with endothelial dysfunction, and with incremental coronary event risk. It remains uncertain whether elevations of ADMA levels might mediate endothelial dysfunction in these conditions. METHODS: Forty two consecutive patients referred for echocardiography for evaluation of AS, who had calculated aortic valve areas of <1.4 cm(2) (AS group) were evaluated together with 42 consecutive age-matched referred patients (non-AS group). Plasma ADMA levels were measured by high-performance liquid chromatography (HPLC). Determinants of elevation of plasma ADMA levels were identified via stepwise multiple linear regression analysis. RESULTS: Plasma ADMA levels were not statistically different between the AS and non-AS group (median 0.59 vs 0.54 micromol/L, p=0.13, Mann-Whitney test) on univariate analysis. However, in backward stepwise multiple linear regression, the presence of AS was a significant predictor of elevated ADMA levels (p=0.04, 95% CI=0.001, 0.072). In addition, elevated plasma ADMA levels were also associated with history of atrial fibrillation (p=0.009, 95% CI=0.015, 0.100), and negatively associated with creatinine clearance (p=0.01, 95% CI=-0.002, 0.000), and the use of statin therapy (p=0.01, 95% CI=-0.081, -0.011). CONCLUSIONS: AS is independently associated with elevation of ADMA levels, beyond that implied by "conventional" risk factors for endothelial dysfunction. The clinical status of AS as an incremental marker of cardiovascular risk may reflect ADMA-mediated endothelial dysfunction.  相似文献   

19.
The avascularity of cardiac valves is abrogated in several valvular heart diseases (VHDs). This study investigated the molecular mechanisms underlying valvular avascularity and its correlation with VHD. Chondromodulin-I, an antiangiogenic factor isolated from cartilage, is abundantly expressed in cardiac valves. Gene targeting of chondromodulin-I resulted in enhanced Vegf-A expression, angiogenesis, lipid deposition and calcification in the cardiac valves of aged mice. Echocardiography showed aortic valve thickening, calcification and turbulent flow, indicative of early changes in aortic stenosis. Conditioned medium obtained from cultured valvular interstitial cells strongly inhibited tube formation and mobilization of endothelial cells and induced their apoptosis; these effects were partially inhibited by chondromodulin-I small interfering RNA. In human VHD, including cases associated with infective endocarditis, rheumatic heart disease and atherosclerosis, VEGF-A expression, neovascularization and calcification were observed in areas of chondromodulin-I downregulation. These findings provide evidence that chondromodulin-I has a pivotal role in maintaining valvular normal function by preventing angiogenesis that may lead to VHD.  相似文献   

20.
Atherosclerosis is a disease with higher levels of mortality in developed countries. Comprehension of the molecular mechanisms can yield very useful information in clinics for prevention, diagnosis and recovery monitoring. Proteomics represents an ideal methodology for this purpose, as proteins constitute the effectors of the different biological processes running during pathogenesis. To date, studies in atherosclerosis have been mainly focused on the search for plasma biomarkers. However, tissue proteomics allows going deeper into tissue secretomes, arterial layers or particular cells of interest, which, in turn, constitutes a more direct approximation to in vivo operating mechanisms. The aim of this review is to report latest advances in tissue proteomics in atherosclerosis and related diseases (e.g., aortic stenosis and ischemic injury).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号