首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Edwardsiella tarda, a Gram-negative bacterium, is an important cause of hemorrhagic septicemia in fish and also of gastro- and extraintestinal infections in humans. The lipopolysaccharide produced by the fish pathogenic strain E. tarda MT 108 was isolated and the structure of its antigenic O-polysaccharide component determined by the application of chemical analyses, high-resolution 1D and 2D nuclear magnetic resonance spectroscopy, and mass spectrometry. The polysaccharide was found to be a polymer of a repeating pentasaccharide unit composed of 2-acetamido-2-deoxy-D-glucose (D-GlcNAc), 2-acetamido-2-deoxy-D-galactose (D-GalNAc), D-galactose (D-Gal), L-rhamnose (L-Rha), D-galacturonic acid (D-GalA) and (2S,3R)-threonine (1:1:1:1:1:1) having the structure: [structure: see text].  相似文献   

2.
Edwardsiella tarda and Streptococcus iniae are important aquaculture pathogens that affect many species of farmed fish. In this study, we analyzed the expression, activity, and immunoprotective potential of E. tarda heat shock protein DnaK. We found that dnaK expression was upregulated under conditions of heat shock, oxidative stress, and infection of host cells. Recombinant DnaK (rDnaK) purified from Escherichia coli exhibited ATPase activity and induced protection in Japanese flounder (Paralichthys olivaceus) against lethal E. tarda challenge. On the basis of these results and our previous observation that a protective S. iniae antigen Sia10 which, when expressed heterogeneously in E. coli DH5α, is secreted into the extracellular milieu, we constructed a chimeric antigen by fusing DnaK to Sia10. The resulting fusion protein Sia10-DnaK was expressed in DH5α via the plasmid pTDK. Western blot analysis indicated that Sia10-DnaK was detected in the culture supernatant of DH5α/pTDK. When flounder were vaccinated with live DH5α/pTDK, strong protection was observed against both E. tarda and S. iniae. ELISA analysis detected specific serum antibody production in fish vaccinated with rDnaK and DH5α/pTDK. Taken together, these results indicate that rDnaK is an intrinsic ATPase with immunoprotective property and that Sia10-DnaK delivered by a live bacterial host is an effective bivalent vaccine candidate against E. tarda and S. iniae infection.  相似文献   

3.
Invasin is an outer membrane protein that is known to mediate entry of enteric bacteria into mammalian cells. In this study, we analyzed the function and immunoprotective potential of the invasin Inv1 from Edwardsiella tarda, a serious fish pathogen that can also infect humans. In silico analysis indicated that Inv1 possesses a conserved N-terminal DUF3442 domain and a C-terminal group 1 bacterial Ig-like domain. Subcellular localization analysis showed that Inv1 is exposed on cell surface and could be recognized by specific antibodies. Mutation of inv1 had no effect on bacterial growth but attenuates overall bacterial virulence and impaired the ability of E. tarda to attach and invade into host cells. Consistent with these observations, antibody blocking of Inv1 inhibited E. tarda infection of host cells. To examine the immunoprotective potential of Inv1, recombinant Inv1 (rInv1) corresponding to the DUF3442 domain was purified and used to vaccinate Japanese flounder (Paralichthys olivaceus). The results showed that rInv1 induced strong protection against lethal-dose challenge of E. tarda. ELISA analysis showed that rInv1-vaccinated fish produced specific serum antibodies that could enhance the serum bactericidal activity against E. tarda. Taken together, these results indicate that Inv1 is a surface-localized virulence factor that is involved in host infection and can induce effective immunoprotection when used as a subunit vaccine.  相似文献   

4.
Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein⿿protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes.  相似文献   

5.
Human Edwardsiella tarda infections often manifest as gastroenteritis, but can become systemic and potentially lethal. E. tarda uses virulence factors that include type III and type VI secretion systems, quorum sensing, two-component systems, and exoenzymes to gain entry into and survive within the host. Better understanding of interactions between these factors will lead to the development of novel antimicrobials against E. tarda and other enterics.  相似文献   

6.
The present study revealed a relationship between the kinetic change of apoptosis and the inflammatory response during experimental intraperitoneal infection with Edwardsiella tarda as a septicemic model. The morphological changes of apoptotic cells including cellular shrinkage, condensed nuclear chromatin, nuclear fragmentation and membrane blebbing were detected by light and transmission electron microscopy. TUNEL and agarose gel electrophoresis confirmed the fragmentation of DNA in the apoptotic cells. Apoptosis was highly detected in lymphoid organs prior to the inflammatory process and gradually decreased after an extensive inflammatory response. Apoptosis in thymus and spleen was extensive and an in vitro study revealed that lymphocytes were the major cell population which underwent apoptosis. The result suggests that E. tarda-induced systemic immunosuppression via lymphocyte apoptosis as determined by suppression of the systemic inflammatory response during an initial step of generalized septicemia.  相似文献   

7.
Outer membrane protein A (OmpA) is a component of the outer membrane of Edwardsiella tarda and is wildly distributed in Enterobacteriaceae family. The gene encoding the OmpA protein was cloned from E. tarda and expressed in Escherichia coli M15 cells. The recombinant OmpA protein containing His6 residues was estimated to have a molecular weight of ∼38 kDa. In Western blot the native protein showed expression at ∼36 kDa molecular weight which was within the range of major outer membrane proteins (36–44 kDa) observed in this study. All E. tarda isolates tested harbored the ompA gene and the antibody raised to this protein was seen to cross react with other Gram negative bacteria. The OmpA protein characterized in this study was observed to be highly immunogenic in both rabbit and fish. In Enzyme linked immunosorbent assay, rabbit antisera showed an antibody titer of 1: 128,000. Common carp vaccinated with recombinant OmpA protein elicited high antibody production and immunized fish showed a relative percentage survival of 54.3 on challenge.  相似文献   

8.
In this paper, we focused on the detection of differentially expressed genes in peripheral blood leucocytes (PBL) during the course of Edwardsiella tarda infection in vaccinated and non-vaccinated Japanese flounder (Paralichthys olivaceus). cDNA microarray analysis was performed to compare the gene expression patterns of the PBL between the vaccinated and non-vaccinated fish in response to E. tarda inoculation. Fish were vaccinated twice, at a two-week interval and experimentally challenged with E. tarda two weeks after the second vaccination. Among the 1187 analyzed genes, 42 genes were up-regulated during the course of infection either in vaccinated or non-vaccinated fish. These genes included immune-related genes, such as MMP-9, MMP-13, CXC chemokine, CD20 receptor and hepcidin. Some immune-related genes were down-regulated after the E. tarda challenge, i.e. interferon inducible Mx protein, MHC class II-associated invariant chain, MHC class II alpha and MHC class II beta encoding genes, immunoglobulin light chain precursor, immunoglobulin light chain and IgM. These responses are thought to be a common reaction of Japanese flounder PBL in the course of edwardsiellosis, irrespective of immunized condition. Ten genes were significantly up-regulated only in vaccinated fish, and 11 genes were significantly up-regulated only in non-vaccinated fish. These genes may have a correlation with the efficacy of vaccination, although we have no evidence to link the different gene expression patterns and the efficacy of vaccination at present.  相似文献   

9.
Wang C  Liu Y  Li H  Xu WJ  Zhang H  Peng XX 《Journal of Proteomics》2012,75(4):1263-1275
We have used differential sub-proteomic methodologies to detect Edwardsiella tarda outer membrane (OM) protein expression regulation during interaction with fish and human plasma, which is the critical step of the bacterial invasion internal organs via blood circulation. Seven and nine OM proteins were differentially expressed in response to fish and human plasma stress, respectively. Six proteins, TolB2, ETAE_2935, ETAE_0245, EvpA, ETAE_2675 and OmpA, were the shared proteins with the similar changes between the two plasma treatments. Except for EvpA, which was a known protein involved in bacterial pathogenesis and stress sensing, the others were first reported here to be related to bacterial invasion and infection. Out of them, four, upregulated ETAE_0245 and OmpA and downregulated ETAE_2675 and ETAE_2935, were selected for investigation of immune protection. The upregulated OmpA and ETAE_0245 were able to induce bactericidal antibodies in mice. These findings demonstrate that differential proteomic methodologies following protein expression regulation to interaction between host and pathogen with bacterial challenge post immunization of these altered proteins is a valid approach for identifying new vaccine candidates and nicely complements other high throughput mining strategies used for vaccine discovery.  相似文献   

10.
CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the β4/α4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be one factor contributing to the low CheA affinity.  相似文献   

11.
12.
AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.  相似文献   

13.
14.
In this study, rpoS gene was identified from Edwardsiella tarda EIB202 and its functional role was analyzed by using an in-frame deletion mutant ∆rpoS and the complemental strain rpoS +. Compared with the wild type and rpoS +, ∆rpoS was impaired in terms of the ability to survive under oxidative stress and nutrient starvation, as well as the resistance to 50% serum of Scophthalmus maximus in 3 h, demonstrating essential roles of RpoS in stress adaptation. The rpoS mutant also displayed markedly increased chondroitinase activity and biofilm formation. Real-time polymerase chain reaction revealed that the expression level of quorum sensing autoinducer synthetase genes luxS and edwI was increased by 3.7- and 2.5-fold in the rpoS mutant strain. Those results suggested that rpoS might be involved in the negative or positive regulation of chondroitinase and biofilm formation, or quorum sensing networks in E. tarda, respectively. Although there were no obvious differences between the wild-type and the rpoS mutant in adherence of epithelioma papulosum cyprini (EPC) cell and in the lethality on fish model, rpoS deletion leads to the drastically reduced capacity for E. tarda to internalize in EPC cells, indicating that RpoS was, while not the main, the factor required for the virulence network of E. tarda.  相似文献   

15.
Aims: The aim of this study was to investigate the role of membrane‐bound lytic murein transglycosylase A (MltA) in a bacterial fish pathogen Edwardsiella tarda. Methods and Results: An mltA in‐frame deletion mutant (ΔmltA) and an mltA overexpression strain (mltA+) of Edw. tarda were constructed through double‐crossover allelic exchange and by transformation of a low‐copy plasmid carrying the intact mltA into the ΔmltA mutant, respectively. Either inactivation or overexpression of MltA in Edw. tarda resulted in elevated sensitivity to β‐lactam antibiotics and lower viability in oligotrophic or high osmotic environment than wild‐type strain. Autolysis induced by EDTA was reduced in ΔmltA strain, while mltA+ strain was virtually flimsy, indicating that MltA is responsible for the lysis effect. Moreover, mltA+ strain exhibited significant increases in lipopolysaccharide (LPS) biosynthesis and virulence to zebra fish compared with wild‐type strain. Conclusions: The results indicated that MltA plays essential roles in β‐lactam antibiotics and environmental stresses resistance, autolysis, LPS biosynthesis and pathogenicity of Edw. tarda. This is the first report that MltA has a virulence‐related function in Edw. tarda. Significance and Impact of the Study: This study provided useful information for further studies on pathogenesis of Edw. tarda.  相似文献   

16.

Aims

The aim of this study was to investigate the role of invasin in a bacterial fish pathogen Edwardsiella tarda.

Methods and Results

In this study, an in‐frame deletion mutant of invasin (Δinv) in Edw. tarda H1 was constructed through double crossover allelic exchange to explore the function of invasin in virulence to fish. Meanwhile, an invasin overexpression strain (inv+) was obtained by electrotransformation of a low‐copy plasmid pACYC184 carrying the intact invasin into the Δinv mutant. Several virulence‐associated characters of the mutants and wild‐type strain were tested. Compared with the wild‐type H1, haemolytic activity and biofilm formation were decreased in Δinv, while increased significantly in inv+. In addition, the invasin overexpressing strain inv+ exhibited increased internalization into Epithelioma Papulosum Cyprini (EPC) cells. Moreover, in zebrafish model, Δinv showed decreased virulence compared with H1, while inv+ restored the virulence of wild type completely.

Conclusions

The results demonstrated that invasin of Edw. tarda plays essential roles in haemolytic activity, biofilm formation, adherence, internalization and pathogenicity of this bacterium.

Significance and Impact of the Study

This study revealed the role of invasin in Edw. tarda infection and provided useful information for further unveiling the pathogenesis of Edw. tarda.  相似文献   

17.
18.

Background

Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants.

Results

The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here.

Conclusion

Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of “guilt-by-association” models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0524-1) contains supplementary material, which is available to authorized users.  相似文献   

19.
Aims: The aim of this study was to reveal functional redundancy and variation of the two catalases KatB and KatG in Edwardsiella tarda. Methods and Results: Genome sequencing of fish pathogen Edw. tarda EIB202 reveals that it contains two genes putatively encoding catalases, katB (ETAE_1368) and katG (ETAE_0889). Under free‐living conditions, single disruption in katB or katG resulted in no growth impairment, whereas double mutation of the two genes led to moderate decrease in growth, indicating that these two catalases were together essential for the physiological fitness by dissipating the endogenous H2O2. katG mutant exhibited much more elevated sensitivity to exogenous H2O2 than katB mutant did, indicating that KatG was quasi‐essential in detoxifying external reactive oxygen species (ROS) in Edw. tarda EIB202. Further comparative analysis indicated that katB or katG disruption showed different effects on the virulence‐related processes of Edw. tarda such as haemolysin production, bile and serum resistance, as well as the internalization within fish epithelial cells. Moreover, both of the katB and katG mutants exhibited incapacity to replicate in murine macrophage J774 cell model, although the deficiency was seen much severe for ΔkatB/katG mutant. With regard to in vivo virulence, katB and katG mutants displayed delayed lethality and increased LD50 values for zebrafish. Conclusions: KatB and KatG in Edw. tarda serve for the physiological fitness, and pathogenesis related the bacterial survival in macrophage and in vivo of fish. Significance and Impact of the Study: Counteracting ROS for systemic infection, Edw. tarda catalase KatG and KatB merits as potential targets for attenuated live vaccine construction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号