首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The journey of developing hematopoietic stem cells   总被引:6,自引:0,他引:6  
Hematopoietic stem cells (HSCs) develop during embryogenesis in a complex process that involves multiple anatomical sites. Once HSC precursors have been specified from mesoderm, they have to mature into functional HSCs and undergo self-renewing divisions to generate a pool of HSCs. During this process, developing HSCs migrate through various embryonic niches, which provide signals for their establishment and the conservation of their self-renewal ability. These processes have to be recapitulated to generate HSCs from embryonic stem cells. Elucidating the interactions between developing HSCs and their niches should facilitate the generation and expansion of HSCs in vitro to exploit their clinical potential.  相似文献   

2.
Hematopoietic stem cells (HSC) are the source of all blood cell types produced during the entire life of an organism. They appear during embryonic development, where they will transit through different successive hematopoietic organs, before to finally colonize the bone marrow. Nowadays, the precise origin of HSC remains a matter of controversy. Different HSC precursor candidates, located in different anatomical sites, have been proposed. Here, we summarize and discuss the different theories in light of the recent articles, especially those using in vivo confocal microscopy technology.  相似文献   

3.
Hematopoietic stem cells (HSCs) undergo expansion and differentiation, giving rise to all terminally differentiated blood cells throughout life. HSCs are found in distinct anatomical sites during development, and in adults, hematopoiesis occurs predominantly on the luminal side of the bone cavity in bone marrow. Millions of newly formed blood cells are generated per second to accommodate the short half-life of hematopoietic cells. For this to happen, HSCs must sustain their self-renewal capacity as well as their capability to commit and differentiate toward multiple cell lineages. Development of the hematopoietic system is finely regulated as the animal ages, so that it does not become exhausted or misdirected. This review covers aspects of hematopoietic development from the embryonic period through adult life in relation to development of dendritic cells. It also considers a role for HSCs in extramedullary sites and their possible role in myelopoiesis, with formation of tissue-specific antigen-presenting cells.  相似文献   

4.
Hematopoietic stem cells: generation and self-renewal   总被引:1,自引:0,他引:1  
Adult stem cells hold great promise for future therapeutic applications. Hematopoietic stem cells (HSCs) are among the best-characterized adult stem cells. As such, these cells provide a conceptual framework for the study of adult stem cells from other organs. Here, we review the current knowledge of HSC generation during embryonic development and HSC maintenance in the bone marrow (BM) during adult life. Recent scientific progress has demonstrated that the development of HSCs involves many anatomical sites in the embryo, but the relative contribution of each of these sites to the adult HSC pool remains controversial. Specialized anatomical sites in the BM have been identified as stem cell niches, and these play essential roles in regulating the self-renewal and differentiation of HSCs through recently identified signaling pathways. Extracellular signaling from stem cell niches must integrate with the intracellular molecular machinery and/or genetic programs to regulate HSC fate choice. The exact cellular and/or molecular mechanisms defining stem cell niche and 'stemness' of HSC is largely unknown although substantial progress has been made recently. Hence, many questions remain to be answered even in this relatively well-defined model of stem cell biology.  相似文献   

5.
6.
Hematopoietic stem cells (HSCs) have the ability to self-renew and generate all cell types of the blood lineages throughout the lifetime of an individual. All HSCs emerge during embryonic development, after which their pool size is maintained by self-renewing cell divisions. Identifying the anatomical origin of HSCs and the critical developmental events regulating the process of HSC development has been complicated as many anatomical sites participate during fetal hematopoiesis. Recently, we identified the placenta as a major hematopoietic organ where HSCs are generated and expanded in unique microenvironmental niches (Gekas, et al 2005, Rhodes, et al 2008). Consequently, the placenta is an important source of HSCs during their emergence and initial expansion.In this article, we show dissection techniques for the isolation of murine placenta from E10.5 and E12.5 embryos, corresponding to the developmental stages of initiation of HSCs and the peak in the size of the HSC pool in the placenta, respectively. In addition, we present an optimized protocol for enzymatic and mechanical dissociation of placental tissue into single-cell suspension for use in flow cytometry or functional assays. We have found that use of collagenase for single-cell suspension of placenta gives sufficient yields of HSCs. An important factor affecting HSC yield from the placenta is the degree of mechanical dissociation prior to, and duration of, enzymatic treatment.We also provide a protocol for the preparation of fixed-frozen placental tissue sections for the visualization of developing HSCs by immunohistochemistry in their precise cellular niches. As hematopoietic specific antigens are not preserved during preparation of paraffin embedded sections, we routinely use fixed frozen sections for localizing placental HSCs and progenitors.Download video file.(286M, mov)  相似文献   

7.
Most tissues are patterned so that progenitors in different locations are programmed to have different properties. Stem cells from different regions of the nervous system acquire intrinsic differences in their properties as they migrate through distinct environments. Hematopoietic stem cells (HSCs) also migrate through diverse environments throughout life, raising the question of whether HSCs also acquire at least transient changes in their properties as they are exposed to diverse environments. Although we observed significant differences in hematopoiesis between the fetal liver and fetal spleen, we were not able to detect phenotypic, functional, or gene expression differences between the HSCs in these organs. Regional differences in definitive hematopoiesis are therefore not determined by regional differences between HSCs. We were also not able to detect phenotypic, functional, or gene expression differences between HSCs in different adult bone marrow compartments. Our failure to detect differences among stem cells from different regions of the hematopoietic system at the same time during development suggests that the hematopoietic system has evolved mechanisms to prevent the spatial reprogramming of HSC properties as they migrate between distinct environments.  相似文献   

8.
During development, skeletal muscles are established in a highly organized manner, which persists throughout life. Molecular and genetic experiments over the last decades have identified many developmental control genes critical for skeletal muscle formation. Developmental studies have shown that skeletal muscles of the body, limb and head have distinct embryonic and cellular origin, and the genetic regulation at work in these domains and during adult myogenesis are starting to be identified. In this review we will summarize the current knowledge on the regulatory circuits that lead to the establishment of skeletal muscle in these different anatomical regions.  相似文献   

9.
The placenta is a niche for hematopoietic stem cells   总被引:14,自引:0,他引:14  
The hematopoietic system develops during embryogenesis at temporally and anatomically restricted sites. The anatomical origin of definitive HSCs is not fully resolved, and little is known about how the different fetal hematopoietic microenvironments direct HSC development. Here, we show that the mouse placenta functions as a hematopoietic organ that harbors a large pool of pluripotent HSCs during midgestation. The onset of HSC activity in the placenta parallels that of the AGM (aorta-gonad-mesonephros) region starting at E10.5-E11.0. However, the placental HSC pool expands until E12.5-E13.5 and contains >15-fold more HSCs than the AGM. The expansion of the CD34(+)c-kit(+) HSC pool in the placenta occurs prior to and during the initial expansion of HSCs in the fetal liver. Importantly, the placental HSC pool is not explained by rare circulating HSCs, which appear later. These data support an important, but unappreciated, role for the placenta in establishing the mammalian definitive hematopoietic system.  相似文献   

10.
In polypterus the mesodermal cavities appear quite late during embryonic life. They are generally small and they only get somewhat more voluminous in the anterior mesomeres (where they establish the pronephrie chambers) and in the ventral anterior mesoderm (where they become an embryonic pericardial cavity). The anlage of the heart appears in the anterior part of the tissue that is situated between the paired mesodermal cavities of these stages. It assumes some unawaited dispositions that are truly confusing in the case of a superficial inspection. It is only during larval life that a coelomic cavity appears all along the truncal part of the mesoderm. In the beginning this is a pericardio-peritoneal cavity. But because of the coalescence between several membranes an anterior cavity gets isolated and this one is the pericardial cavity of the adult specimens; this cavity is much more limited than its homonymic counterpart of the embryonic stages.  相似文献   

11.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

12.
Embryonic origin of the adult hematopoietic system: advances and questions   总被引:1,自引:0,他引:1  
Definitive hematopoietic stem cells (HSCs) lie at the foundation of the adult hematopoietic system and provide an organism throughout its life with all blood cell types. Several tissues demonstrate hematopoietic activity at early stages of embryonic development, but which tissue is the primary source of these important cells and what are the early embryonic ancestors of definitive HSCs? Here, we review recent advances in the field of HSC research that have shed light on such questions, while setting them into a historical context, and discuss key issues currently circulating in this field.  相似文献   

13.
Cripto has been known as an embryonic stem (ES)- or tumor-related soluble/cell membrane protein. In this study, we demonstrated that Cripto has a role as an important regulatory factor for hematopoietic stem cells (HSCs). Recombinant Cripto sustained the reconstitution ability of HSCs in vitro. Flow cytometry analysis uncovered that GRP78, one of the candidate receptors for Cripto, was expressed on a subset of HSCs and could distinguish dormant/myeloid-biased HSCs and active/lymphoid-biased HSCs. Cripto is expressed in hypoxic endosteal niche cells where GRP78(+) HSCs mainly reside. Proteomics analysis revealed that Cripto-GRP78 binding stimulates glycolytic metabolism-related proteins and results in lower mitochondrial potential in HSCs. Furthermore, conditional knockout mice for HIF-1α, a master regulator of hypoxic responses, showed reduced Cripto expression and decreased GRP78(+) HSCs in the endosteal niche area. Thus, Cripto-GRP78 is a novel HSC regulatory signal mainly working in the hypoxic niche.  相似文献   

14.
Hematopoietic stem cells (HSCs) can self-renew and differentiate into all cell types of the blood. This is therapeutically important as HSC transplants can provide a curative effect for blood cancers and disorders. The process by which HSCs develop has been the subject of extensive research in a variety of model organisms; however, efforts to produce bonafide HSCs from pluripotent precursors capable of long-term multilineage reconstitution have fallen short. Studies in zebrafish, chicken, and mice have been instrumental in guiding efforts to derive HSCs from human pluripotent stem cells and have identified a complex set of molecular signals and cellular interactions mediated by such developmental regulators as fibroblast growth factor, Notch, transforming growth factor beta (TGFβ), and Wnt, which collectively promote the stepwise developmental progression toward mature HSCs. Tight temporal and spatial control of these signals is critical to generate the appropriate numbers of HSCs needed for the life of the organism. The role of the Wnt family of signaling proteins in hematopoietic development has been the subject of many studies owing in part to the complex nature of its signaling mechanisms. By integrating cell fate specification with cell polarity establishment, Wnt is uniquely capable of controlling complex biological processes, including at multiple stages of embryonic HSC development, from HSC specification to emergence from the hemogenic epithelium to subsequent expansion. This review highlights key signaling events where specific Wnt signals instruct and guide hematopoietic development in both zebrafish and mice and extend these findings to current efforts of generating HSCs in vitro.  相似文献   

15.
Emergence of haematopoietic stem cells during development   总被引:2,自引:0,他引:2  
  相似文献   

16.
In vertebrates, myeloid cells arise from multiple waves of development: the first or embryonic wave of myelopoiesis initiates early from non-hematopoietic stem cell(HSC) precursors and gives rise to myeloid cells transiently during early development; whereas the second or adult wave of myelopoiesis emerges later from HSCs and produces myeloid cells continually during fetal and adult life. In the past decades, a great deal has been learnt about the development of myeloid cells from adult myelopoiesis, yet the genetic network governing embryonic myelopoiesis remains poorly defined. In this report, we present an in vivo study to delineate the role of Cebpa during zebrafish embryonic myelopoiesis. We show that embryonic myelopoiesis in cebpa-deficient zebrafish mutants initiates properly but fails to produce macrophages and neutrophils. The lack of macrophages and neutrophils in the mutants is largely attributed to the cell cycle arrest of embryonic myeloid progenitors, resulting in the impairment of their maintenance and subsequent differentiation. We further show that Cebpa, perhaps acting cooperatively with Runx1, plays a critical role in embryonic neutrophil maintenance. Our findings reveal a new role of Cebpa in embryonic myelopoiesis.  相似文献   

17.
The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site within the mammalian embryo body, and the first place from which hematopoietic stem cells (HSCs) emerge. Within the complex embryonic vascular, excretory and reproductive tissues of the AGM region, the precise location of HSC development is unknown. To determine where HSCs develop, we subdissected the AGM into aorta and urogenital ridge segments and transplanted the cells into irradiated adult recipients. We demonstrate that HSCs first appear in the dorsal aorta area. Furthermore, we show that vitelline and umbilical arteries contain high frequencies of HSCs coincident with HSC appearance in the AGM. While later in development and after organ explant culture we find HSCs in the urogenital ridges, our results strongly suggest that the major arteries of the embryo are the most important sites from which definitive HSCs first emerge.  相似文献   

18.
19.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

20.
Hematopoietic stem cells(HSCs) are specified and generated during the embryonic development and have remarkable potential to replenish the full set of blood cell lineages. Researchers have long been interested in clarifying the molecular events involved in HSC specification. Many studies have reported the development of methods for generating functional hematopoietic cells from pluripotent stem cells(PSCs-embryonic stem cells(ESCs) and induced pluripotent stem cells(i PSCs)) for decades. However, the generation of HSCs with robust long-term repopulation potential remains a swingeing challenge, of which a major factor contributing to this failure is the difficulty to define the intraembryonic signals related to the specification of HSCs. Since HSCs directly derive from hemogenic endothelium, in this review, we summarize both in vivo and in vitro studies on conserved signaling pathways that control the specification of HSCs from hemogenic endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号