首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor β1 (TGF-β1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-β1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.This work was supported by grants R92-001-1 and R92-001-2 from the Veterans General Hospital, Taipei, and grant NSC-92-2314-B-075-022 from the National Science Council, Taiwan.  相似文献   

3.
Chondrogenic differentiation of amniotic fluid-derived stem cells   总被引:3,自引:0,他引:3  
For regenerating damaged articular cartilage, it is necessary to identify an appropriate cell source that is easily accessible, can be expanded to large numbers, and has chondrogenic potential. Amniotic fluid-derived stem (AFS) cells have recently been isolated from human and rodent amniotic fluid and shown to be highly proliferative and broadly pluripotent. The purpose of this study was to investigate the chondrogenic potential of human AFS cells in pellet and alginate hydrogel cultures. Human AFS cells were expanded in various media conditions, and cultured for three weeks with growth factor supplementation. There was increased production of sulfated glycosaminoglycan (sGAG) and type II collagen in response to transforming growth factor-β (TGF-β) supplementation, with TGF-β1 producing greater increases than TGF-β3. Modification of expansion media supplements and addition of insulin-like growth factor-1 during pellet culture further increased sGAG/DNA over TGF-β1 supplementation alone. Compared to bone marrow-derived mesenchymal stem cells, the AFS cells produced less cartilaginous matrix after three weeks of TGF-β1 supplementation in pellet culture. Even so, this study demonstrates that AFS cells have the potential to differentiate along the chondrogenic lineage, thus establishing the feasibility of using these cells for cartilage repair applications.  相似文献   

4.
Mesenchymal stem cell (MSC) has been known as a good source of progenitor for multiple connective tissue including cartilage, muscle, adipocyte, and bone. P-glycoproteins (P-gps) also known as ABCB1 that exports diverse substrates are the product of the multidrug resistance-1 (MDR-1) gene. P-gp expression has been reported in chondrosarcoma and hypertrophic chondrocyte in the human growth plate. This study was designed to investigate the expression of P-gp during chondrogenic differentiation of adult human stem cells. Bone marrow samples were obtained from nine human donors after informed consent. The isolated mononuclear cells (MNCs) were incubated as one pellet/tube and 0.5ml chondrogenic medium in the presence of 10ng/ml of TGF-beta 1 and TGF-beta 3 for 28 days. The expression of surface P-gps was analyzed by flow cytometry and quantitative RT-PCR was performed for the detection of mRNA expression of MDR-1 and type II collagen gene. Total collagen and glycosaminoglycan (GAG) contents of the pellets were measured. Surface P-gp expression of the MSCs was decreased during chondrogenic differentiation. MDR-1 gene was decreased 10-fold after the 2-week incubation whereas type II collagen gene was increased 491-fold after the 4-week incubation in chondrogenic medium. The total amount of collagen and GAG were increased during pellet culture. This study has demonstrated a decrease in expression of P-gp and down regulation of MDR-1 gene consistently by flow cytometry and quantitative RT-PCR, but an increased expression of type II collagen on MSC during chondrogenesis.  相似文献   

5.
6.
Cartilage structures from the head and neck possess a certain but limited capacity to heal after injury. This capacity is accredited to the perichondrium. In this study, the role of the inner (cambium) and the outer (fibrous) layers of the perichondrium in cartilage wound healing in vitro is investigated. For the first time, the possibility of selectively removing the outer perichondrium layer is presented. Using rabbit ears, three different conditions were created: cartilage explants with both perichondrium layers intact, cartilage explants with only the outer perichondrium layer dissected, and cartilage explants with both perichondrium layers removed. The explants were studied after 0, 3, 7, 14, and 21 days of in vitro culturing using histochemistry and immunohistochemistry for Ki-67, collagen type II, transforming growth factor beta 1 (TGFbeta1), and fibroblast growth factor 2 (FGF2). When both perichondrium layers were not disturbed, fibrous cells grew over the cut edges of the explants from day 3 of culture on. New cartilage formation was never observed in this condition. When only the outer perichondrium layer was dissected from the cartilage explants, new cartilage formation was observed around the whole explant at day 21. When both perichondrium layers were removed, no alterations were observed at the wound surfaces. The growth factors TGFbeta1 and FGF2 were expressed in the entire perichondrium immediately after explantation. The expression gradually decreased with time in culture. However, the expression of TGFbeta1 remained high in the outer perichondrium layer and the layer of cells growing over the explant. This indicates a role for TGFbeta1 in the enhancement of fibrous overgrowth during the cartilage wound-healing process. The results of this experimental in vitro study demonstrate the dual role of perichondrium in cartilage wound healing. On the one hand, the inner layer of the perichondrium, adjacent to the cartilage, provides (in time) cells for new cartilage formation. On the other hand, the outer layer rapidly produces fibrous overgrowth, preventing the good cartilage-to-cartilage connection necessary to restore the mechanical function of the structure.  相似文献   

7.
Human adipose tissue is a viable source of mesenchymal stem cells (MSCs) with wide differentiation potential for musculoskeletal tissue engineering research. The stem cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and expanded in vitro easily. This study was to determine molecular and cellular characterization of PLA cells during chondrogenic differentiation in vitro and cartilage formation in vivo . When cultured in vitro with chondrogenic medium as monolayers in high density, they could be induced toward the chondrogenic lineages. To determine their ability of cartilage formation in vivo , the induced cells in alginate gel were implanted in nude mice subcutaneously for up to 20 weeks. Histological and immunohistochemical analysis of the induced cells and retrieved specimens from nude mice at various intervals showed obviously cartilaginous phenotype with positive staining of specific extracellular matrix (ECM). Correlatively, results of RT-PCR and Western Blot confirmed the expression of characteristic molecules during chondrogenic differentiation namely collagen type II, SOX9, cartilage oligomeric protein (COMP) and the cartilage-specific proteoglycan aggrecan. Meanwhile, there was low level synthesis of collagen type X and decreasing production of collagen type I during induction in vitro and formation of cartilaginous tissue in vivo . These cells induced to form engineered cartilage can maintain the stable phenotype and indicate no sign of hypertrophy in 20 weeks in vivo , however, when they cultured as monolayers, they showed prehypertrophic alteration in late stage about 10 weeks after induction. Therefore, it is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.  相似文献   

8.
9.
High-density cell culture is pivotal for the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). Two high-density cell culture systems, micromass and pellet culture, have been used to induce chondrogenic differentiation of hMSCs. In micromass culture, the induced-cartilage tissues were larger, more homogenous and enriched in cartilage-specific collagen II but the fibrocartilage-like feature, collagen I, and hypertrophic chondrocyte feature, collagen X, were markedly decreased compared to those in pellet culture. Furthermore, real time RT-PCR analysis demonstrated that collagen II and aggrecan mRNA were up-regulated while collagen X and collagen I mRNA were down-regulated in micromass culture. Thus, the micromass culture system is a promising tool for in vitro chondrogenic studies.  相似文献   

10.
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3α mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.  相似文献   

11.
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.  相似文献   

12.
The microscopic and submicroscopic structures of perichondrial tissues in the head cartilages of Octopus vulgaris were studied by polarized light and transmission electron microscopy. The orbital cartilages possess a birefringent layer parallel to the surface of the cartilage; ultrastructurally, this layer, which may be considered perichondrial tissue, has the typical organisation of connective tissue but does not possess the stratification of collagen laminae found in vertebrate perichondria. Perichondrial extracellular matrix is clearly distinct from that of cartilage because its collagen fibrils are of a larger diameter than collagen fibrils from cartilage. In addition, perichondrial fibroblasts are characteristically located at the center of collagen fibers. In the cerebral cartilage, the perichondrium is absent or discontinuous in relation to complex interconnections between cartilage and connective fibres, muscle fibres, blood vessels and nerve. Distinctive cartilage-lining cells, rich in electron dense cytoplasmatic granules, are stratified either along the cartilage surface or along vessels and muscle fibres that penetrate within the cartilage. The perichondrium of cephalopod cartilage, whose structure varies according to the location and function of its skeletal segments, mimics that of vertebrate perichondrium, exemplifying the high level of tissue differentiation attained by cephalopods.  相似文献   

13.
High incidence of articular cartilage defects resulting from age-related degeneration or trauma injuries is a major problem worldwide. Limited self-regeneration ability of cartilage often leads to inappropriate biochemistry and structure of healed tissue. Considering Impairments of traditional treatments, cell-based therapies are promising. The rapid ex vivo expansion and chondrogenic differentiation capability make dental pulp stem cells (DPSCs) a favorable cell type for therapeutic application, however strategies in order to efficient cartilage tissue-like production are imperative. In the present study the potential role of hypoxia mimicking agent, cobalt chloride (CoCl2), on chondrogenic differentiation of human DPSCs was surveyed. Cell viability assay used to obtain the optimum dose and exposure time of CoCl2. DPSCs were differentiated in pellet culture system after CoCl2 pretreatment. Chondrogenic differentiation efficiency was evaluated by histological and immunohistological analyses. The results showed that CoCl2 led to increased pellet size, integrity and matrix deposition with organizations more resembled typical cartilage lacuna structure. Furthermore, CoCl2 could improve differentiation by elevated chondrogenic markers, glycosaminoglycans (GAGs) and collagen II expression. CoCl2 pretreatment mitigated hypertrophy, as well, which was reflected in decreased collagen X expression. Alkaline phosphatase (ALP) specific activity did not change significantly by CoCl2 preconditioning. Based on current study hypoxia mimicking agent, CoCl2, could be suggested to promote DPSCs chondrogenic differentiation.  相似文献   

14.
Adult mesenchymal stem cells (MSCs) are currently being investigated as an alternative to chondrocytes for repairing cartilage defects. As several collagen types participate in the formation of cartilage-specific extracellular matrix, we have investigated their gene expression levels during MSC chondrogenic induction. Bone marrow MSCs were cultured in pellet in the presence of BMP-2 and TGF-β3 for 24 days. After addition of FGF-2, at the fourth passage during MSC expansion, there was an enhancing effect on specific cartilage gene expression when compared to that without FGF-2 at day 12 in pellet culture. A switch in expression from the pre-chondrogenic type IIA form to the cartilage-specific type IIB form of the collagen type II gene was observed at day 24. A short-term addition of FGF-2 followed by a treatment with BMP-2/TGF-β3 appears sufficient to accelerate chondrogenesis with a particular effect on the main cartilage collagens.  相似文献   

15.
This study examined the effects of low intensity pulsed ultrasound (LIPUS) on human bone marrow-derived mesenchymal stem cells undergoing chondrogenic differentiation. Aggregates of mesenchymal stem cells and mesenchymal stem cells seeded in three dimensional matrices were cultured in a defined chondrogenic medium and subjected to LIPUS for the first 7 days of culture. At 1, 7, 14 and 21 days, samples were harvested for histology, immunohistochemistry, RT-PCR, and quantitative DNA and matrix macromolecule analysis. Cell aggregates with daily treatment for 20 minutes showed no significant differences for proteoglycan and collagen content during chondrogenic differentiation. However ultrasound application for 40 minutes daily resulted in a statistically significant increase of the proteoglycan and collagen content after 21 days in culture. Aggregates treated for 20 minutes daily showed decreased expression of chondrogenic genes at all time points. In contrast, 40 minutes of daily treatment of aggregates resulted in a significant increase of chondrogenic marker genes after an initial decrease at day 7 with time in culture. Ultrasound treated cell-scaffold constructs showed a significant increase of chondrogenic marker gene expression and extracellular matrix deposition. This study indicates that LIPUS can be used to enhance the chondrogenesis of mesenchymal stem cells in cell aggregates and cell-scaffold constructs. We have found a dependency on the specific treatment parameters. We hypothesize that LIPUS can be used for an improved in vitro preparation of optimized tissue engineering implants for cartilage repair. Furthermore this non-invasive method could also be of potential use in vivo for regenerative therapy of cartilage in the future.  相似文献   

16.
During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro chondrogenesis induction on human bone marrow MSCs (hBMSCs) by cycling the growth factors. The pellet cultures of hBMSCs were prepared for chondrogenic induction. Growth factors: TGF-beta3, BMP-6, and IGF-1 were used in combination for cell induction. Gene expression, histology, immunohistology, and real-time PCR methods were measured on days 21 after cell induction. As shown by histology and immunohistology, the induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, collagen type II and aggrecan. This study has demonstrated that cartilage tissue can be created from bone marrow mesenchymal stem cells. Interestingly, the combined growth factors TGF-beta3 and BMP-6 or TGF-beta3 and IGF-1 were more effective for chondrogenesis induction as shown by the real-time PCR assay. The combination of these growth factors may be the important key for in vitro chondrogenesis induction.  相似文献   

17.
We investigated the influence of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). During chondrogenic induction, MSCs combined with polyglycolic acid (PGA) were cultured by static culture or microgravity rotating culture and chondrocyte formation was confirmed by toluidine blue staining. Furthermore, the mRNA and protein expressions of a specific cartilage extracellular matrix protein (collagen type II and Aggrecan) were evaluated by real-time RT-PCR and western blot, respectively. Toluidine blue staining indicated the OD values of proteoglycans semi-determination were higher in the microgravity rotating culture group than the static culture group. Following chondrogenic induction, mRNA and proteins of collagen type II and Aggrecan were more significantly expressed in cells of the microgravity rotating culture group compared with the controls. Compared with routine three-dimensional static culture, the microgravity rotating culture system was more effective for the construction of tissue-engineered cartilage in vitro.  相似文献   

18.

Background

Based on evidence from several other tissues, cartilage stem/progenitor cells in the auricular cartilage presumably contribute to tissue development or homeostasis of the auricle. However, no definitive studies have identified or characterized a stem/progenitor population in mice auricle.

Methodology/Principal Findings

The 5-bromo-2′-deoxyuridine (BrdU) label-retaining technique was used to label dividing cells in fetal mice. Observations one year following the labeling revealed that label-retaining cells (LRCs) were present specifically in auricular perichondrium at a rate of 0.08±0.06%, but LRCs were not present in chondrium. Furthermore, LRCs were successfully isolated and cultivated from auricular cartilage. Immunocytochemical analyses showed that LRCs express CD44 and integrin-α5. These LRCs, putative stem/progenitor cells, possess clonogenicity and chondrogenic capability in vitro.

Conclusions/Significance

We have identified a population of putative cartilage stem/progenitor cells in the auricular perichondrium of mice. Further characterization and utilization of the cell population should improve our understanding of basic cartilage biology and lead to advances in cartilage tissue engineering and novel therapeutic strategies for patients with craniofacial defects, including long-term tissue restoration.  相似文献   

19.
《Organogenesis》2013,9(1):28-32
Human articular cartilage is an avascular structure, which, when injured, poses significant hurdles to repair strategies. Not only does the defect need to be repopulated with cells, but preferentially with hyaline-like cartilage.

Successful tissue engineering relies on four specific criteria: cells, growth factors, scaffolds, and the mechanical environment. The cell population utilized may originate from cartilage itself (chondrocytes) or growth factors may direct the development of mesenchymal stem cells toward a chondrogenic phenotype. These stem cells may originate from various mesenchymal tissues including bone marrow, synovium, adipose tissue, skeletal muscle, and periosteum. Another unique population of multipotent cells arises from Wharton’s jelly in human umbilical cords. A number of growth factors have been associated with chondrogenic differentiation of stem cells and maintenance of the chondrogenic phenotype by chondrocytes in vitro, including TGF-β; BMP-2, 4, and 7; IGF-1; and GDF-5.

The scaffolds chosen for effective tissue engineering with respect to cartilage repair can be protein based (collagen, fibrin, and gelatin), carbohydrate based (hyaluronan, agarose, alginate, PLLA/PGA, and chitosan), or formed by hydrogels. Mechanical compression, fluid-induced shear stress, and hydrostatic pressure are all aspects of mechanical loading found in the human knee joint, both during gait and at rest. Utilizing these factors may assist in stimulating the development of more robust cells for implantation.

Effective tissue engineering has the ability to improve the quality of life of millions of patients and delay future medical costs related to joint arthroplasty and associated procedures.  相似文献   

20.
The tesserate pattern of endoskeletal calcification has been investigated in jaws, gill arches, vertebral arches and fins of the sharks Carcharhinus menisorrah, Triaenodon obesus and Negaprion brevirostris by techniques of light and electron microscopy. Individual tesserae develop peripherally at the boundary between cartilage and perichondrium. An inner zone, the body, is composed of calcified cartilage containing viable chondrocytes separated by basophilic contour lines which have been called Liesegang waves or rings. The outer zone of tesserae, the cap, is composed of calcified tissue which appears to be produced by perichondrial fibroblasts more directly, i.e., without first differentiating as chondroblasts. Furthermore, the cap zone is penetrated by acidophilic Sharpey fibers of collagen. It is suggested that scleroblasts of the cap zone could be classified as osteoblasts. If so, the cap could be considered a thin veneer of bone atop the calcified cartilage of the body of a tessera. By scanning electron microscopy it was observed that outer and inner surfaces of tesserae differ in appearance. Calcospherites and hydroxyapatite crystals similar to those commonly seen on the surface of bone are present on the outer surface of the tessera adjacent to the perichondrium. On the inner surface adjoining hyaline cartilage, however, calcospherites of variable size are the predominant surface feature. Transmission electron microscopy shows calcification in close association with coarse collagen fibrils on the outer side of a tessera, but such fibrils are absent from the cartilaginous matrix along the under side of tesserae. Calcified cartilage as a tissue type in the endoskeleton of sharks is a primitive vertebrate characteristic. Calcification in the tesserate pattern occurring in modern Chondrichthyes may be derived from an ancestral pattern of a continuous bed of calcified cartilage underlying a layer of perichondral bone, as theorized by Ørvig (1951); or the tesserate pattern in these fish may itself be primitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号