首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Certain core and membrane proteins of vaccinia virus undergo proteolytic cleavage at consensus AG/X sites. The processing of core proteins is coupled to morphogenesis and is inhibited by the drug rifampin, whereas processing of the A17 membrane protein occurs at an earlier stage of assembly and is unaffected by the drug. A temperature-sensitive mutant with a lesion in the I7L gene exhibits blocks in morphogenesis and in cleavage of core proteins. We found that the mutant also failed to cleave the A17 membrane protein. To further investigate the role of the putative I7 protease, we constructed a conditional lethal mutant in which the I7L gene was regulated by the Escherichia coli lac repressor. In the absence of an inducer, the synthesis of I7 was repressed, proteolytic processing of the A17 membrane protein and the L4 core protein was inhibited, and virus morphogenesis was blocked. Under these conditions, expression of the wild-type I7 protein in trans restored protein processing. In contrast, rescue did not occur when the putative protease active site residue histidine 241 or cysteine 328 of I7 was converted to alanine. The mutation of an authentic AG/A and an alternative AG/S motif of L4 prevented substrate cleavage. Similarly, when AG/X sites of A17 were mutated, I7-induced cleavages at the N and C termini failed to occur. In conclusion, we provide evidence that I7 is a viral protease that is required for AG/X-specific cleavages of viral membrane and core proteins, which occur at early and late stages of virus assembly, respectively.  相似文献   

2.
The bactericidal activity of mouse Paneth cell alphadefensins, or cryptdins, is dependent on processing of cryptdin precursors (pro-Crps) by matrix metalloproteinase-7 (MMP-7) (Wilson, C. L., Ouellette, A. J., Satchell, D. P., Ayabe, T., Lopez-Boado, Y. S., Stratman, J. L., Hultgren, S. J., Matrisian, L. M., and Parks, W. C. (1999) Science 286, 113-117). To investigate the mechanisms of pro-Crp processing by this enzyme, recombinant pro-Crp4, a His-tagged chimeric pro-Crp (pro-CC), and site-directed mutant precursors of each were digested with MMP-7, and the cleavage products were analyzed by NH(2)-terminal peptide sequencing. Proteolysis of pro-Crp4 with MMP-7 activated in vitro bactericidal activity to the level of the mature Crp4 peptide by cleaving pro-Crp4 at Ser(43) downward arrow Ile(44) and Ala(53) downward arrow Leu(54) in the proregion and near the Crp4 peptide NH(2) terminus between Ser(58) downward arrow Leu(59). Because the Crp4 NH(2) terminus occurs at Gly(61), not Leu(59), MMP-7 is necessary but insufficient to complete the processing of Crp4. Crp activating proteolysis at S58 downward arrow L59 was unaffected by I44S/I44D or L54S/L54D loss-of-function mutations in pro-Crp4, and a (L59S)-pro-CC mutant was cleaved normally at Ser(43) downward arrow Val(44) and Ser(53) downward arrow Leu(54) sites but not at the peptide NH(2) terminus. C57BL/6 mice contain an abundant (L59S)-Crp4 mutant peptide with Leu(54) at its NH(2) terminus resulting from Ala(53) downward arrow Leu(54) cleavage and loss-of-function at the Ser(58) downward arrow Ser(59) cleavage site. Thus, alpha-defensins resulting from mutations at MMP-7 cleavage sites exist in mouse populations. A pro-CC substrate containing both L54S and L59S mutations resisted cleavage at Ser(43) downward arrow Val(44) completely, showing that cleavage at one or both downstream sites must precede proteolysis at Ser(43) downward arrow Val(44). These findings show that MMP-7 activation of pro-Crps can occur without proteolysis of the proregion, and prosegment fragmentation depends, at least in part, on the release of the Crp peptide from the precursor.  相似文献   

3.
The gene encoding the Neurospora mitochondrial large rRNA contains a single group I intron of 2.3 kilobases that is not self-splicing in vitro. We showed previously that the splicing of this intron in vivo and in vitro is dependent on the Neurospora cyt-18 protein, mitochondrial tyrosyl-tRNA synthetase. In the present work, we carried out further structural analysis of the intron and constructed mutant derivatives of it in order to identify features that are either required for splicing or prevent it from self-splicing. Previous studies showed that the intron contains a large hairpin structure near the 5' splice site. By mapping RNase III cleavage sites, we identified this hairpin structure as an extended P2 stem. We construct a mini-intron of 388 nucleotides by deleting the 426-amino acid intron open reading frame, most of the 5' intron hairpin, and all of L8. This mini-intron shows the same protein-dependent splicing as the full length intron, but is still not self-splicing. Further deletions, which remove all of P2 or all or part of P4, P6, P7, or P9, inactivate splicing, suggesting that an intact group I intron core structure is required. Strengthening the P1, P10, or P9.0 pairings did not enable the mini-intron to self-splice. Our findings indicate that the inability of the mitochondrial large rRNA intron to self-splice reflects deficiency of a structure or activity required for cleavage at the 5' splice site, either in the intron core itself or in the interaction between the core and the P1 stem.  相似文献   

4.
The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.  相似文献   

5.
trans processing of vaccinia virus core proteins.   总被引:1,自引:1,他引:0       下载免费PDF全文
P Lee  D E Hruby 《Journal of virology》1993,67(7):4252-4263
The three major vaccinia virus (VV) virion proteins (4a, 4b, and 25K) are proteolytically matured from larger precursors (P4a, P4b, and P25K) during virus assembly. Within the precursors, Ala-Gly-X motifs have been noted at the putative processing sites, with cleavage apparently taking place between the Gly and X residues. To identify the sequence and/or structural parameters which are required to define an efficient cleavage site, a trans-processing assay system has been developed by tagging the carboxy terminus of the P25K polypeptide (precursor of 25K) with an octapeptide FLAG epitope, which can be specifically recognized by a monoclonal antibody. By using transient expression assays with cells coinfected with VV, the proteolytic processing of the chimeric gene product (P25K:FLAG) was monitored by immunoblotting procedures. The relationship between the P25K:FLAG precursor and the 25K:FLAG cleavage product was established by pulse-chase experiments. The in vivo cleavage of P25K:FLAG was inhibited by the drug rifampin, implying that the reaction was utilizing the same pathway as authentic VV core proteins. Moreover, the 25K:FLAG protein was found in association with mature virions in accord with the notion that cleavage occurs concomitantly with virion assembly. Site-directed mutagenesis of the Ala-Gly-Ala motif at residues 31 to 33 of the P25K:FLAG precursor to Ile-Asp-Ile blocked production of the 25K:FLAG product. The efficiency of 25K:FLAG production (33.71%) is, however, approximately only half of the production of 25K (63.98%) within VV-infected cells transfected with pL4R:FLAG. One explanation for the lower efficiency of 25K:FLAG production was suggested by the observation in the immunofluorescent-staining experiment that 25K:FLAG-related proteins were not specifically localized to the virus assembly factories (virosomes) within VV-infected cells, although virosome localization was prominent for P25K-related polypeptides. Since VV core protein proteolytic processing is believed to take place during virion maturation, only the P25K:FLAG which was assembled into immature virions could undergo proteolytic maturation. Furthermore during these experiments, a potential cleavage intermediate (25K') of P25K was identified. Amino acid residues 17 to 19 (Ala-Gly-Ser) of the P25K precursor were implicated as the intermediate cleavage site, since no 25K':FLAG product was produced from a mutant precursor in which the sequence was altered to Ile-Asp-Ile. Taken together, these results provide biochemical and genetic evidence to support the hypothesis that the Ala-Gly-X cleavage motif plays a critical role in VV virion protein proteolytic maturation.  相似文献   

6.
Maturation of the head of bacteriophage T4. I. DNA packaging events   总被引:480,自引:0,他引:480  
Pulse-chase experiments in wild-type and mutant phage-infected cells provide evidence that the following particles called prohead I, II and III are successive precursors to the mature heads. The prohead I particles contain predominantly the precursor protein P23 and possibly P22 (mol. wt 31,000) and IP III (mol. wt 24,000) and have an s value of about 400 S. Concomitantly with the cleavage of most of P23 (mol. wt 55,000) to P231 (mol. wt 45,000), they are rapidly converted into prohead II particles which sediment with about 350 S. The prohead II particles contain, in addition to P231, the major constituents of the viral shella—a core consisting of proteins P22 and IP III. In cell lysates, prohead I and prohead II particles contain no DNA in a DNase-resistant form and are not bound to the replicative DNA. We cannot, however, positively rule out the possibility that these particles may have contained some DNA while in the cells.The prohead II particles are in turn converted into particles which sediment with about 550 S after DNase treatment (prohead III). During this conversion about 50% of normal DNA complement becomes packaged in a DNase-resistant form, and roughly 50% of the core proteins P22 and IP III are cleaved. In lysates the prohead III particles are attached to the replicative DNA. The prohead III particle appears to be the immediate precursor of the full mature head (1100 S). Cleavage of protein P22 to small polypeptides and conversion of IP III IP III1 are completed at this time. No precursor proteins are found in the full heads. Studies with various mutant phage showed that the prohead II to III conversion is blocked by mutations in genes 16 and 17 and that the conversion of the prohead III particles to the mature heads is blocked by mutations in gene 49. Cleavage of the head proteins, however, occurs normally in these mutant-infected cells. We conclude that the cleavage of the major component of the viral shell, P23, into P231 precedes the DNA packaging event, whereas cleavage of the core proteins P22 and IP III appears to be intimately linked to the DNA packaging event. Models relating the cleavage processes to DNA encapsulation are discussed.  相似文献   

7.
Parkinson's disease (PD) is characterized by dopaminergic dysfunction and degeneration. DJ-1/PARK7 mutations have been linked with a familial form of early onset PD. In this study, we found that human DJ-1 wild type and the missense mutants M26I, R98Q, A104T and D149A were stable proteins in cells, only the L166P mutant was unstable. In parallel, the former were not degraded and the L166P mutant was directly degraded in vitro by proteasome-mediated endoproteolytic cleavage. Furthermore, genetic evidence in fission yeast showed the direct involvement of proteasome in the degradation of human DJ-1 L166P and the corresponding L169P mutant of SPAC22E12.03c, the human orthologue of DJ-1 in Schizosaccharomyces Pombe, as their protein levels were increased at restrictive temperature in fission yeast (mts4 and pts1-732) harboring temperature sensitive mutations in proteasomal subunits. In total, our results provide evidence that direct proteasomal endoproteolytic cleavage of DJ-1 L166P is the mechanism of degradation contributing to the loss-of-function of the mutant protein, a property not shared by other DJ-1 missense mutants associated with PD.  相似文献   

8.
Precursors of the T4 internal peptides.   总被引:6,自引:3,他引:3       下载免费PDF全文
The precursors of the two T4 internal peptides have been identified by in vitro cleavage of individual phage proteins eluted from sodium dodecyl sulfate-acrylamide gels. The precursor of internal peptide VII is p22, the product of T4 gene 22 and an essential component of the morphogenic core. The precursor of peptide II is a protein with a molecular weight of approximately 13,000, whose gene has yet to be defined by mutation. A newly detected protein of approximately 15,000 molecular weight is found to be cleaved and is, therefore, likely to be a component of precursor head structures.  相似文献   

9.
Plasmids were constructed which contained a large portion of each of the four nonstructural genes of Sindbis virus fused to the N-terminal two-thirds of the trpE gene of Escherichia coli. The large quantity of fusion protein induced from cells containing these plasmids was subsequently used as an antigen to generate polyclonal antisera in rabbits. Each antiserum was specific for the corresponding nonstructural protein and allowed ready identification of each nonstructural protein and of precursors containing the sequences of two or more nonstructural proteins. These antisera were used to determine the stability of the mature nonstructural proteins and to examine the kinetics of processing of the nonstructural proteins from their respective precursors in vivo. Pulse-chase experiments showed that the precursor P123 is cleaved with a half-life of approximately 19 min to produce P12 and nsP3; P12 is then cleaved with a half-life of approximately 9 min to produce nsP1 and nsP2. Thus, although the rate of cleavage between nsP1 and nsP2 is faster than that between nsP2 and nsP3, the latter cleavage must occur first and is therefore the rate-limiting step. The rate at which P34 is chased suggests that the cleavage between nsP3 and nsP4 is the last to occur; however the regulation of nsP4 function in Sindbis virus-infected cells may be even more complex than was previously thought. The products nsP1 and nsP2 (and nsP4) are relatively stable; nsP3, however, is unstable, with a half-life of about 1 h, and appears to be modified to produce heterodisperse, higher-molecular-mass forms. In general, the processing schemes used by Sindbis virus and Semliki Forest virus appear very similar, the major difference being that most nsP3 in Sindbis virus results from termination at an opal condon, whereas in Semliki Forest virus cleavage of the P34 precursor is required.  相似文献   

10.
The stability, dynamic, and structural properties of ubiquitin and two multiple hydrophobic core mutants were studied. One of the mutants (U4) has seven substitutions in the hydrophobic core (M1L, I3L, V5I, I13F, L15V, V17M, and V26L). On average, its side chains are larger than the wild-type, and it can thus be thought of as having an overpacked core. The other mutant (U7) has two substitutions (I3V and I13V). On average, it has smaller side chains than the wild-type, and it can therefore be considered to be underpacked. The three proteins are well-folded and show similar backbone dynamics (T(1), T(2), and HNOE values), indicating that the regular secondary structure extends over the same residue ranges. The crystallographic structure of U4 was determined. The final R(factor) and R(free) are 0.198 and 0.248, respectively, at 2.18 A resolution. The structure of U4 is very similar to wild-type ubiquitin. Remarkably, there are almost no changes in the positions of the C(alpha) atoms along the entire backbone, and the hydrogen-bonding network is maintained. The mutations of the hydrophobic core are accommodated by small movements of side chains in the core of mutated and nonmutated residues. Unfolding and refolding kinetic studies revealed that U4 unfolds with the highest rates; however, its refolding rate constants are very similar to those of the wild-type protein. Conversely, U7 seems to be the most destabilized protein; its refolding rate constant is smaller than the other two proteins. This was confirmed by stopped-flow techniques and by H/D exchange methodologies. This work illustrates the possibility of repacking the hydrophobic core of small proteins and has important implications in the de novo design of stable proteins.  相似文献   

11.
Modular engineering of a Group I intron ribozyme   总被引:3,自引:0,他引:3  
All Group I intron ribozymes contain a conserved core region consisting of two helical domains, P4–P6 and P3–P7. Recent studies have demonstrated that the elements required for catalysis are concentrated in the P3–P7 domain. We carried out in vitro selection experiments by using three newly constructed libraries on a variant of the T4 td Group I ribozyme containing only a P3–P7 domain in its core. Selected variants with new peripheral elements at L7.1, L8 or L9 after nine cycles efficiently catalyzed the reversal reaction of the first step of self-splicing. The variants from this selection contained a short sequence complementary to the substrate RNA without exception. The most active variant, which was 3-fold more active than the parental wild-type ribozyme, was developed from the second selection by employing a clone from the first selection. The results show that the P3–P7 domain can stand as an independent catalytic module to which a variety of new domains for enhancing the activity of the ribozyme can be added.  相似文献   

12.
All large ribosomal subunits contain two dimers composed of small acidic proteins that are involved in binding elongation factors during protein synthesis. The ribosomal location of the C-terminal globular domain of the Escherichia coli ribosomal acidic protein L7/L12 has been determined by protein cross-linking with a new heterobifunctional, reversible, photoactivatable reagent, N-[4-(p-azidosalicylamido)-butyl]-3-(2'-pyridyldithio)propionamide . Properties of this reagent are described. It was first radiolabeled with 125I and then attached through the formation of a disulfide bond to a unique cysteine of L7/L12, introduced by site-directed mutagenesis at residue 89. Intact 50S ribosomal subunits were reconstituted from L7/L12-depleted cores and the radiolabeled L7/L12Cys89. Irradiation of the reconstituted subunits resulted in photo-cross-linking between residue 89 and other ribosomal components. Reductive cleavage of the disulfide cross-link resulted in transfer of the 125I label from L7/L12Cys89 to the other cross-linked components. Two radiolabeled proteins were identified, L11 and L10. The location of both of these proteins is well established to be at the base of the L7/L12 stalk near the binding sites for the N-terminal domain of both L7/L12 dimers, and for elongation factors. The result indicates that L7/L12 can have a bent conformation bringing the C-terminal domain of at least one of the L7/L12 dimers at or near the factor-binding domain. The cross-linking method with radiolabeled N-[4-(p-azidosalicylamido)butyl]-3-(2'-pyridyldithio)propionamide should be applicable for studies of other multicomponent complexes that can be reconstituted.  相似文献   

13.
Three photoactive derivatives of the 7-methylguanosine-containing cap of eukaryotic mRNA were used to investigate protein synthesis initiation factor eIF-4E from human erythrocytes and rabbit reticulocytes. Sensitive and specific labeling of eIF-4E was observed with the previously described probe, [gamma-32P]-gamma-[[(4-benzoylphenyl)methyl]amido]-7-methyl-GTP [Blaas et al. (1982) Virology 116, 339; abbreviated [32P]BPM]. A second probe was synthesized that was an azidophenyltyrosine derivative of m7GTP [( 125I]APTM), the monoanhydride of m7GDP with [125I]-N-(4-azidophenyl)-2-(phosphoramido)-3-(4-hydroxy-3-iodop hen yl) propionamide. This probe allowed rapid and quantitative introduction of radioactivity in the last rather than the first step of synthesis and placed the radioactive label on the protein-proximal side of the weak P-N bond. A dissociation constant of 6.9 microM was determined for [125I]APTM, which is comparable to the published values for m7GTP. m7GTP and APTM were equally effective as competitive inhibitors of eIF-4E labeling with [125I]APTM. Like [32P]BPM, [125I]APTM labeled both the full-length (25 kDa) polypeptide and a 16-kDa degradation product, designated eIF-4E*, with labeling occurring in proportion to the amounts of each polypeptide present. A third probe, an azidophenylglycine derivative of m7GTP [( 32P]APGM), the monoanhydride of m7GDP with [32P]-N-(4-azidophenyl)-2-(phosphoramido)acetamide, was also synthesized and shown to label eIF-4E specifically. Unlike [32P]BPM and [125I]APTM, however, [32P]APGM labeled eIF-4E* approximately 4-fold more readily than intact eIF-4E. Tryptic and CNBr cleavage suggested that eIF-4E* consists of a protease-resistant core of eIF-4E that retains the cap-binding site and consists of approximately residues 47-182.  相似文献   

14.
Retroviruses encode a protease which cleaves the viral Gag and Gag/Pol protein precursors into mature products. To understand the target sequence specificity of the viral protease, the amino acid sequences from 46 known processing sites from 10 diverse retroviruses were compared. Sequence preference was evident in positions P4 through P3' when compared to flanking sequences. Approximately 80% of all cleavage site sequences could be grouped into two classes based on the sequence composition flanking the scissile bond. The sequences at the amino-terminal cleavage site of the major capsid protein of Gag is always a member of one of the two classes while the carboxyl-terminal cleavage site is of the other class, suggesting a biological role for the two classes. Known processing site sequences proved useful in a motif searching strategy to identify processing sites in retroviral protein sequences, particularly in Gag. In all known cleavage sites, the P1 amino acid is hydrophobic and unbranched at the beta-carbon. The sequence requirements of the P1 position were tested by site-directed mutagenesis of the P1 Phe codon in an HIV-1 Pol cleavage site. Mutations were tested for protease-mediated cleavage of the Pol precursor expressed in Escherichia coli.  相似文献   

15.
Maturation of adenoviruses is distinguished by proteolytic processing of several interior minor capsid proteins and core proteins by the adenoviral protease and subsequent reorganization of adenovirus core. We report the results derived from the icosahedrally averaged cryo-EM structure of a cell entry defective form of adenovirus, designated ts1, at a resolution of 3.7 Å as well as of the localized reconstructions of unique hexons and penton base. The virion structure revealed the structures and organization of precursors of minor capsid proteins, pIIIa, pVI and pVIII, which are closely associated with the hexons on the capsid interior. In addition to a well-ordered helical domain (a.a. 310–397) of pIIIa, highlights of the structure include the precursors of VIII display significantly different structures near the cleavage sites. Moreover, we traced residues 4–96 of the membrane lytic protein (pVI) that includes an amphipathic helix occluded deep in the hexon cavity suggesting the possibility of co-assembly of hexons with the precursors of VI. In addition, we observe a second copy of pVI ordered up to residue L40 in the peripentonal hexons and a few fragments of density corresponding to 2nd and 3rd copies of pVI in other hexons. However, we see no evidence of precursors of VII binding in the hexon cavity. These findings suggest the possibility that differently bound pVI molecules undergo processing at the N-terminal cleavage sites at varying efficiencies, subsequently creating competition between the cleaved and uncleaved forms of VI, followed by reorganization, processing, and release of VI molecules from the hexon cavities.  相似文献   

16.
A study was made of the cleavage by M1 RNA and RNase P of a non-tRNA precursor that can serve as a substrate for RNase P from Escherichia coli, namely, the precursor to 4.5 S RNA (p4.5S). The overall efficiency of cleavage of p4.5S by RNase P is similar to that of wild-type tRNA precursors. However, unlike the reaction with wild-type tRNA precursors, the reaction catalyzed by the holoenzyme with p4.5S as substrate has a much lower Km value than that catalyzed by M1 RNA with the same substrate, indicating that the protein subunit plays a crucial role in the recognition of p4.5S. A model hairpin substrate, based on the sequence of p4.5S, is cleaved with greater efficiency than the parent molecule. The 3'-terminal CCC sequence of p4.5 S may be as important for cleavage of this substrate as the 3'-terminal CCA sequence is for cleavage of tRNA precursors.  相似文献   

17.
B Laggerbauer  F L Murphy    T R Cech 《The EMBO journal》1994,13(11):2669-2676
The L-21 Tetrahymena ribozyme, an RNA molecule with sequence-specific endoribonuclease activity derived from a self-splicing group I intron, provides a model system for studying the RNA folding problem. A 160 nucleotide, independently folding domain of tertiary structure (the P4-P6 domain) comprises about half of the ribozyme. We now apply Fe(II)-EDTA cleavage to mutants of the ribozyme to explore the role of individual structural elements in tertiary folding of the RNA at equilibrium. Deletion of peripheral elements near the 3' end of the ribozyme destabilizes a region of the catalytic core (P3-P7) without altering the folding of the P4-P6 domain. Three different mutations within the P4-P6 domain that destabilize its folding also shift the folding of the P3-P7 region of the catalytic core to higher MgCl2 concentrations. We conclude that the role of the extended P4-P6 domain and of the 3'-terminal peripheral elements is at least in part to stabilize the catalytic core. The organization of RNA into independently folding domains of tertiary structure may be common in large RNAs, including ribosomal RNAs. Furthermore, the observation of domain-domain interactions in a catalytic RNA supports the feasibility of a primitive spliceosome without any proteins.  相似文献   

18.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

19.
Activation of Paneth cell alpha-defensins in mouse small intestine.   总被引:5,自引:0,他引:5  
Paneth cells in small intestine crypts secrete microbicidal alpha-defensins, termed cryptdins, as components of enteric innate immunity. The bactericidal activity of cryptdins requires proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7; matrilysin) (Wilson, C. L., Ouellette, A. J., Satchell, D. P., Ayabe, T., Lopez-Boado, Y. S., Stratman, J. L., Hultgren, S. J., Matrisian, L. M., and Parks, W. C. (1999) Science 286, 113-117). Here, we report on the intracellular processing of cryptdin proforms in mouse Paneth cells. Peptide sequencing of MMP-7 digests of purified natural procryptdins identified conserved cleavage sites in the proregion between Ser(43) and Val(44) as well as at the cryptdin peptide N terminus between Ser(58) and Leu(59). Immunostaining co-localized precursor prosegments and mature cryptdin peptides to Paneth cell granules, providing evidence of their secretion. Extensive MMP-7-dependent procryptdin processing occurs in Paneth cells, as shown by Western blot analyses of intestinal crypt proteins and proteins from granule-enriched subcellular fractions. The addition of soluble prosegments to in vitro antimicrobial peptide assays inhibited the bactericidal activities of cryptdin-3 and -4 in trans, suggesting possible cytoprotective effects by prosegments prior to secretion. Levels of activated cryptdins were normal in small bowel of germ-free mice and in sterile implants of fetal mouse small intestine grown subcutaneously. Thus, the initiation of procryptdin processing by MMP-7 does not require direct bacterial exposure, and the basal MMP-7 content of germ-free Paneth cells is sufficient to process and activate alpha-defensin precursors. MMP-7-dependent procryptdin activation in vivo provides mouse Paneth cells with functional peptides for apical secretion into the small intestine lumen.  相似文献   

20.
B Streicher  E Westhof    R Schroeder 《The EMBO journal》1996,15(10):2556-2564
Several divalent metal ions (Ca2+, Sr2+ and Pb2+) do not promote splicing, but instead induce cleavage at a single site in the conserved group I intron core in the absence of the guanosine cofactor at elevated pH, generating products with 5'-OH and 3'-phosphate ends. The reaction is competed by Mg2+, which does not cleave at this position, but hydrolyses the splice sites producing 3'-OH and 5'-phosphate ends. Mn2+ promotes both core cleavage and splice site hydrolysis under identical conditions, suggesting that two different metal atoms are involved, each responsible for one type of cleavage, and with different chemical and geometric requirements. Based on the core cleavage position and on the previously proposed coordination sites for Mg2+, we propose a structural location for two metal ions surrounding the splice site in the Michel-Westhof three-dimensional model of the group I intron core. The proposed location was strengthened by a first mutational analysis which supported the suggested interaction between one of the metal ions and the bulged residue in P7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号