首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitotic Hep-2 cells, selected by the PEL (colloidal silica) density gradient method and held in mitosis with Colcemid, are readily infected by poliovirus type I (Mahoney). They produce and release the same amount of virus as interphase, random-growing cells. In contrast to interphase cells, mitotic cells show no detectable virus-induced cytopathic effect at the light microscopy level and only slight alterations, consisting of small clusters of vacuoles, at the electron microscopy level. Mitotic cells contain the same total amount of lysosomal enzymes per cell as interphase cells, but they display no redistribution of lysosomal enzymes during the virus infection as interphase cells do. This supports the view that lysosomal enzyme redistribution is associated with the cytopathic effect in poliovirus infection but shows that virus synthesis and release is not dependent on either the cytopathic effect or lysosomal enzyme release. The possible reasons for the lack of cytopathic effect in mitotic cells are discussed.  相似文献   

2.
Although the subcellular distribution profile of acid phosphatase in HeLa cells is typical of a lysosomal enzyme, different lysosomal (70–80%) and supernatant forms (20–30%) have been demonstrated by their differences in pH activity curves, substrate specificities, thermal stability, sensitivity to inhibitors, and kinetics. Enzymes of the lysosomal fraction displayed anomalous kinetics in the hydrolysis of p-nitrophenyl phosphate. The major lysosomal acid phosphatase activity appears to be associated with the membrane.The total acid phosphatase activity in the cell is controlled by the concentration of serum in the medium. The specific activity in the homogenates of cells grown in high serum concentration (30%) is about twice that of cells grown in low serum concentration (1%). This doubling of specific activity holds for the lysosomal enzyme (or enzymes), but little change occurs in the supernatant form (or forms). Two other lysosomal enzymes, β-glucuronidase and N-acetyl-β-d-hexosaminidase, do not increase in specific activity. The serum-dependent formation of acid phosphatase is sensitive to cycloheximide, actinomycin D, and cordycepin. Cycloheximide blocks the increase in enzymatic activity immediately, whereas cordycepin and actinomycin D have no effect for at least 8 h. These findings suggest that de novo protein synthesis is involved in the induction of lysosomal acid phosphatase by serum and that the mRNA for this enzyme is relatively stable.  相似文献   

3.
Factors which influence lysosomal enzyme accumulation in cultured cells have been studied. In cell types of both fibroblast (3T6) and epithelial (HeLa) origin, acid phosphatase and β-N-acetylglucosaminidase activities increase with increasing cell density. However, in other cell lines such as BHK or chick embryo fibroblasts, little or no accumulation of lysosomal enzymes occurred with increased cell density. Increased lysosomal enzyme activity need not necessarily be accompanied by alterations in rate of cell growth, rate of pinocytosis, or amount of internalized degradable macromolecules. The stimulus for lysosomal enzyme accumulation appears to require cell contact, since sparsely plated cells do not exhibit lysosomal enzyme accumulation. In 3T6 cells, lysosomal enzymes also accumulate during “step-down” conditions, such as amino acid or serum depletion, or during unbalanced growth resulting from inhibition of cytokinesis or DNA synthesis. Increases in the specific activity of lysosomal enzymes which occur during step-down conditions or unbalanced growth require cell contact, since they are not seen in sparse cells, but are observed in medium- and high-density cells incubated in serum-free medium. Studies employing actinomycin D suggest that lysosomal enzyme levels are regulated primarily via control of enzyme synthesis, rather than enzyme degradation.  相似文献   

4.
A phospholipase was found in the lysosomes of HEp-2 cells. The enzyme exhibited properties typical of other lysosomal enzymes including redistribution from the lysosomes during poliovirus infection. It is proposed that this enzyme may play a role in poliovirus-induced cytopathic effects.  相似文献   

5.
Secondary lysosomes contain low-molecular weight iron-complexes as a consequence of normal autophagocytotic degradation of various metallo-proteins. Thus, entry of hydrogen peroxide into these organelles may induce ironcatalyzed oxidative reactions with ensuing damage to lysosomal membranes and leakage of destructive contents. The amount of lysosomal reactive iron and the cellular capacity to degrade hydrogen peroxide would then be important determining factors in cellular resistance to oxidative stress. The effects of hydrogen peroxide on cell viability and, in particular, on lysosomal membrane integrity, evaluated by acridine orange, lucifer yellow, neutral red, and cathepsin D relocalization, were investigated in a model system of cultured J-774 cells. The protective effect of the iron-chelator desferal was studied after exposure to the drug under ordinary culture conditions and after inhibition of cellular endocytosis. Hydrogen peroxide-exposure (500 μM in PBS, 37°C, 5–90 min) was manifested as a time-dependent decrease in cell viability. This was preceded by a rapid reduction of the proton gradient across the lysosomal membranes, as judged by relocalization of acridine orange. Another early sign of damage was plasma membrane blebbing, found on many cells within minutes after the initiation of hydrogen peroxide-exposure. The cells also showed a partial redistribution of the lysosomal markers lucifer yellow, neutral red, and cathepsin D, indicating lysosomal destabilization. The pre-exposure of cells to desferal in culture prevented all these phenomena, unless endocytotic uptake of the drug was prevented.  相似文献   

6.
The effect of low concentrations of actinomycin D was investigated, using two forms of DNA-dependent RNA polymerase (A and B) purified from normal tissues and experimental tumours, in the presence either of Mn2+ or Mg2+, and homologous DNA. The A enzyme activity was strongly inhibited by the antibiotic in presence of Mg2+ and much less in presence of Mn2+. The B enzyme activity was almost suppressed in presence of both cations. The results here reported provide support that the actinomycin D induce a cellular damage of the same extent in normal and tumour tissues.  相似文献   

7.
TNF-alpha cytotoxic signaling involves lysosomal permeabilization with release of the lysosomal protease cathepsin B (ctsb) into the cytosol. However, the mechanisms mediating lysosomal breakdown remain unclear. Because caspase-8 and factor associated with neutral sphingomyelinase activation (FAN) have been implicated as proximal mediators of TNF-alpha-associated apoptosis, their role in lysosomal permeabilization was examined. Cellular distribution of ctsb-green fluorescent protein (ctsb-GFP) in a rat hepatoma cell line was imaged by confocal microscopy. ctsb-GFP fluorescence was punctate under basal conditions but became diffuse after treatment with TNF-alpha/actinomycin D. This cellular redistribution of ctsb-GFP was blocked by transfection with a vector expressing a dominant-negative Fas-associated protein with death domain (DeltaFADD), cytokine response modifier A, or a pharmacological caspase-8 inhibitor, IETD-fmk. Consistent with the concept that caspase 8-mediated apoptosis is also Bid-dependent in hepatocytes, ctsb-GFP release from lysosomes was reduced in hepatocytes from Bid(-/-) mice. Interestingly, transfection with a vector expressing a dominant-negative FAN (DeltaFAN) also blocked ctsb-GFP release and caspase-8 activation. Paradigms that inhibited ctsb-GFP release from lysosomes also reduced apoptosis as assessed by morphology and biochemical criteria. In conclusion, these studies suggest FAN is upstream of caspase-8/Bid in a signaling cascade culminating in lysosomal permeabilization.  相似文献   

8.
The effect of actinomycin D on chick embryos cultivated in vitro by New's culturing method was studied. Exposure of chick embryos to actinomycin D (0.05 micrograms/ml) at the primitive streak stage (stage 4; Hamburger and Hamilton) for 6 h showed interference in orotic acid formation. The assay of the enzyme dihydroorotic acid dehydrogenase was carried out in both treated and control embryos. No enzymic activity was observed in actinomycin-D-treated embryos in contrast to the considerable activity in the controls. These observations suggest an interference by actinomycin D in the biogenesis of the enzyme dihydroorotic acid dehydrogenase.  相似文献   

9.
Lysosomes are degradation and signaling centers within the cell, and their dysfunction impairs a wide variety of cellular processes. To understand the cellular effect of lysosome damage, we screened natural smallmolecule compounds that induce lysosomal abnormality using Caenorhabditis elegans (C. elegans) as a model system. A group of vobasinyl-ibogan type bisindole alkaloids (ervachinines A–D) were identified that caused lysosome enlargement in C. elegans macrophage-like cells. Intriguingly, these compounds triggered cell death in the germ line independently of the canonical apoptosis pathway. In mammalian cells, ervachinines A–D induced lysosomal enlargement and damage, leading to leakage of cathepsin proteases, inhibition of autophagosome degradation and necrotic cell death. Further analysis revealed that this ervachinine-induced lysosome damage and lysosomal cell death depended on STAT3 signaling, but not RIP1 or RIP3 signaling. These findings suggest that lysosomedamaging compounds are promising reagents for dissecting signaling mechanisms underlying lysosome homeostasis and lysosome-related human disorders.  相似文献   

10.
Using rabbit antiserum hyperimmune to herpes simplex virus (HSV) type 1, the expression of HSV-common surface antigen(s) was studied by indirect immunofluorescence tests in cells transformed by HSV type 2 and in derived tumor cells. The following results were obtained. (i) Antiserum to HSV type 1 reacted specifically with surface antigen present on the plasma membrane of both HSV type 2-infected and HSV type 2-transformed hamster cells. (ii) The expression of this antigen was enhanced in the absence of active protein synthesis in transformed cells, but not in tumor cells, after culture for 3 to 5 h at 37 degrees C. (iii) This enhancement of expression was maintained for 20 h in the presence of actinomycin D, but this prolonged expression required active protein synthesis. (iv) The enhancing effect observed in the presence of actinomycin D continued for some time after removal of the drug, for example, for 20 h after 5 h of treatment with 2 microgram/ml of actinomycin D per ml. Actinomycin D had no detectable effect on antigen expression in tumor cells. (v) The protease inhibitor antipain inhibited the actinomycin D-enhanced expression without causing significant cell damage but did not modify the transient enhanced expression of antigen when cells were seeded in the absence of actinomycin D. These results indicate that in transformed cells antigen expression can be enhanced in at least two ways.  相似文献   

11.
12.
13.
Rate enhancements in the DNase I footprinting experiment.   总被引:8,自引:7,他引:1       下载免费PDF全文
Footprinting experiments for DNase I digests of a 139-base-pair segment of pBR-322 DNA in the presence of either netropsin or actinomycin D were carried out. Plots of oligonucleotide concentration as a function of drug concentration were analyzed to study the enhancement in cleavage rates at approximately 30 sites, accompanying drug binding at other sites. The pattern of enhancements is not consistent with drug-induced DNA structural changes, but agrees with a redistribution mechanism involving DNase I. Since the total number of enzyme molecules per fragment remains unchanged, drug binding at some sites increases the enzyme concentration at other sites, giving rise to increased cleavage. The consequences of the redistribution mechanism for analysis of footprinting experiments are indicated.  相似文献   

14.
At neutral pH, the rate of penicillinase synthesis by staphylococci declines gradually after removal of free inducer, while at pH 5.4 enzyme formation is generally linear for an extended period. Linear synthesis of penicillinase was observed at neutral pH in nonsaturating concentrations (1 μg/ml) of actinomycin D. The rate of enzyme synthesis, corrected for inhibition of growth caused by the antibiotic, was relatively independent of the time of actinomycin addition. The lag preceding linear enzyme formation increased with the interval between induction and the addition of actinomycin. The findings are consistent with the concept that, at neutral pH, “operons” activated by induction are rapidly repressed, while at pH 5.4, this process is delayed.

At a concentration of 4 μg/ml, actinomycin D blocked penicillinase messenger synthesis and also elicited a short-lived acceleration of the increase of penicillinase activity in uninduced and, late after induction, in induced cultures. This effect did not require a functional genomic repressor mechanism since it occurred also in a penicillinase-constitutive strain. It required protein synthesis and could not be attributed to a greater enzyme stability in the presence of actinomycin. The results suggest enhanced penicillinase translation after addition of actinomycin D.

  相似文献   

15.
Induction of DNA damage triggers a complex biological response concerning not only repair systems but also virtually every cell function. DNA topoisomerases regulate the level of DNA supercoiling in all DNA transactions. Reverse gyrase is a peculiar DNA topoisomerase, specific to hyperthermophilic microorganisms, which contains a helicase and a topoisomerase IA domain that has the unique ability to introduce positive supercoiling into DNA molecules. We show here that reverse gyrase of the archaean Sulfolobus solfataricus is mobilized to DNA in vivo after UV irradiation. The enzyme, either purified or in cell extracts, forms stable covalent complexes with UV-damaged DNA in vitro. We also show that the reverse gyrase translocation to DNA in vivo and the stabilization of covalent complexes in vitro are specific effects of UV light irradiation and do not occur with the intercalating agent actinomycin D. Our results suggest that reverse gyrase might participate, directly or indirectly, in the cell response to UV light-induced DNA damage. This is the first direct evidence of the recruitment of a topoisomerase IA enzyme to DNA after the induction of DNA damage. The interaction between helicase and topoisomerase activities has been previously proposed to facilitate aspects of DNA replication or recombination in both Bacteria and Eukarya. Our results suggest a general role of the association of such activities in maintaining genome integrity and a mutual effect of DNA topology and repair.  相似文献   

16.
Ph. Matile  A. Wiemken  W. Guyer 《Planta》1971,96(1):43-53
Summary Cells of Saccharomyces cerevisiae that have been growing exponentially for many generations contain low activities of lysosomal enzymes. In contrast to such fully adapted cells, differentiating or resting cells contain comparatively high activities of these enzymes. Thus, the digestive enzymes seem to be involved in the process of biochemical differentiation.One of the four aminopeptidase isozymes present in extracts from yeast cells is localized in the vacuoles. This lysosomal enzyme can be separated from the other aminopeptidases by Sephadex G-150 gel filtration. Its specific activity is about 4 times higher in stationary cells than in exponentially growing cells.Upon incubating protoplasts in a buffered sorbitol medium the activities of proteases and RNase increase significantly. A corresponding increase of lysosomal aminopeptidase activity occurs in the absence of glutamic acid or casein hydrolysate. Cycloheximide and actinomycin D inhibit the increase of lysosomal hydrolase activities in differentiating protoplasts. The observed changes of enzyme activities are probably due to induced synthesis of the respective proteins.The present work has been supported by the Swiss National Science Foundation.  相似文献   

17.
Mitotic catastrophe is a phenomenon displayed by cells undergoing aberrant mitosis to eliminate cells that fail to repair the errors. Why and how mitotic catastrophe would lead to cell death remains to be resolved and the answer will prove valuable in design of better therapeutic agents that specifically target such cells in mitosis. The antibiotic actinomycin D has been shown to induce chromosomal lesions in lower order organisms as well as in human interphase cells. Relatively few studies have been conducted to elucidate molecular events in the context of mitotic DNA damage. We have previously established a model of mitotic catastrophe in human HeLa cells induced by actinomycin D. Here, we show that actinomycin D induce cellular stress via DNA damage during mitosis. The higher order packing of chromosomes during mitosis might impede efficient DNA repair. γH2AX serves as a marker for DNA repair and active JNK interacts with γH2AX in actinomycin D‐treated mitotic extracts. We believe JNK might be in part, responsible for the phosphorylation of H2AX and thereby, facilitate the propagation of a positive signal for cell death, when repair is not achieved. The mitotic cell activates JNK‐mediated cell death response that progresses through a caspase cascade downstream of the mitochondria. In the mean time, remaining checkpoint signals may be sufficient to put a restraining hand on entry into anaphase and the cell eventually dies in mitosis. J. Cell. Biochem. 110: 725–731, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
B lymphocytes from patients with I-cell disease (ICD) maintain normal cellular levels of lysosomal enzymes despite a deficiency of the enzyme UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1- phosphotransferase. We find that an ICD B lymphoblastoid cell line targets about 45% of the lysosomal protease cathepsin D to dense lysosomes. This targeting occurs in the absence of detectable mannose 6- phosphate residues on the cathepsin D and is not observed in ICD fibroblasts. The secretory protein pepsinogen, which is closely related to cathepsin D in both amino acid sequence and three-dimensional structure, is mostly excluded from dense lysosomes, indicating that the lymphoblast targeting pathway is specific. Carbohydrate residues are not required for lysosomal targeting, since a non-glycosylated mutant cathepsin D is sorted with comparable efficiency to the wild type protein. Analysis of a number of cathepsin D/pepsinogen chimeric proteins indicates that an extensive polypeptide determinant in the cathepsin D carboxyl lobe can confer efficient lysosomal sorting when introduced into the pepsinogen sequence. This determinant overlaps but is not identical to the recognition marker for phosphotransferase. These results indicate that a specific protein recognition event underlies Man-6-P-independent lysosomal sorting in ICD lymphoblasts.  相似文献   

20.
Ribosomal RNA (rRNA) synthesis in the intact Ehrlich ascite carcinoma cells is selectively inhibited by papaverin (ED50 = 0.01 mM), 2,4-dinitrophenol (DPN; ED50 = 5 microM), and actinomycin D (ED50 = 0.1 microgram/ml). The inhibition of rRNA synthesis is not connected with a direct action of these agents on the rRNA synthesis apparatus, and they had no effect on isolated cell nuclei. The rRNA synthesis in cells permeabilized with triton X-100 (0.05%) becomes insensible to the action of papaverine and DPN, but is inhibited by actinomycin D in low doses. In cells permeabilized with digitonin (0.01%) the rRNA synthesis shows no sensibility to the action of low doses of actinomycin D. The results suggest that the action of these agents on the rRNA synthesis may depend on cell integrity and on the permeabilization method employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号