首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model.  相似文献   

2.
Imatinib induces a complete cytogenetic regression in a large percentage of patients affected by chronic myeloid leukemia (CML) until mutations in the kinase domain of BCR-ABL appear. Alternative strategies for CML patients include the inhibition of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which is constitutively activated in leukemia cells and seems important for the regulation of cell proliferation, viability, and autophagy. In this study, we verified the effect of imatinib mesylate (IM), alone or in association with LY294002 (LY) (a specific PI3K protein tyrosine kinase inhibitor) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) (a Src tyrosine kinase inhibitor), on viability, intracellular calcium mobilization, apoptosis, and autophagy, in order to verify possible mechanisms of interaction. Our data demonstrated that PP1 and LY interact synergistically with IM by inducing apoptosis and autophagy in Bcr/Abl+ leukemia cells and this mechanism is related to the stress of the endoplasmic reticulum (ER). Our findings suggest a reasonable relationship between apoptotic and autophagic activity of tyrosine kinase inhibitors (TKIs) and the functionality of smooth ER Ca2+-ATPase and inositol triphosphate receptors, independently of intracellular calcium levels. Therapeutic strategies combining imatinib with PI3K and/or Src kinase inhibitors warrant further investigations in Bcr/Abl+ malignancies, particularly in the cases of imatinib mesylate-resistant disease.  相似文献   

3.
Imatinib mesylate is a major advance in the therapy of patients with chronic myelogenous leukemia (CML). Imatinib mesylate binds to the inactive conformation of BCR-ABL tyrosine kinase suppressing the Philadelphia chromosome positive clone in CML. Clinical studies have yielded impressive results in all phases of CML. With higher rates of complete cytogenetic response with imatinib, molecular monitoring of disease is now advisable in assessing response and determining prognosis. Emergence of resistance to imatinib may be manifest at the hematologic, cytogenetic, or molecular levels in patients who remain in chronic phase, or may be evidenced by the development of more advanced CML phases. Resistance and eventual clinical failure of imatinib occurs in most patients with blastic phase disease. Resistance may occur at the level of Bcr-Abl, with reduction or loss of imatinib effectiveness as a kinase inhibitor, or, despite retention of its inhibitory ability, with changes in the ability to deliver an effective dose at the cellular level, and/or, the leukemia becoming less dependent on Bcr-Abl. The various mechanisms underlying these differing, non-mutually exclusive, mechanisms of resistance must be understood to develop corresponding therapeutic remedies. We review the current data on imatinib in CML, the criteria for diagnosis of imatinib resistance, and the mechanisms that underlie such resistance in CML.  相似文献   

4.
Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML.  相似文献   

5.
慢性粒细胞白血病是一类造血干细胞的恶性克隆性疾病,ph染色体是其特征性细胞遗传学标志,即t(9;22)(q34;ql1),存在BCR/ABL融合基因,现阶段造血干细胞移植是当前最有希望治愈CML的疗法,但受年龄、配型等限制,易发生移植物抗宿主病;复发率较高;传统的化疗、干扰素治疗也有副作用,因此,通过信号传导抑制剂抑制BCR-ABL酪氨酸激酶活性,从而阻止一系列信号传导来治疗CML是一个比较好的治疗方法,伊马替尼是一种酪氨酸激酶抑制剂是治疗慢性粒细胞白血病的靶向治疗药物,治疗疗效显著,但是并不能根治慢性粒细胞白血病,需要长期服药,一些患者出现耐药,导致治疗无效或复发。因此,寻求新的治疗方案至关重要。本文就慢性粒细胞白血病的耐药机制及治疗策略做一综述。  相似文献   

6.
Imatinib (IMT) is a selective tyrosine kinase inhibitor, used in the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Its strong plasma protein binding was found to belong to the F1*S genetic variant of α(1)-acid glycoprotein (AGP). In this work, comparative AGP binding studies were performed with IMT fragment molecules to reveal which parts of the molecule are important in the high-affinity interaction provoking specific spectral changes. Molecular modeling calculations indicated that IMT docked into the X-ray structure of AGP/F1 adopts a bent, compact conformation. This binding mode is similar to those found in its complexes with some low-affinity kinases and a quinone reductase, being strikingly different from the extended conformation of IMT in its high-affinity kinase targets.  相似文献   

7.
Imatinib (Glivec or Gleevec) potently inhibits the tyrosine kinase activity of BCR-ABL, a constitutively activated kinase, which causes chronic myelogenous leukemia (CML). Here we report the first almost complete backbone assignment of c-ABL kinase domain in complex with imatinib. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Chronic myeloid leukemia (CML) is a pluripotent hematopoietic disorder that is currently considered incurable. The tyrosine kinase product of the Philadelphia chromosome, P210 BCR-ABL, provided a pathogenetic explanation for the initiation of the CML chronic phase and is the molecular therapeutic target for the disease. Imatinib mesylate, an orally available BCR-ABL kinase inhibitor, can induce haematologic and cytogenetic remission of CML. However, imatinib resistance occurs frequently, resulting in relapse. New treatment strategies are focusing on resistant CML stem cells and the bone marrow stroma. The identification of novel pathways and mechanisms in the bone marrow microenvironment could significantly contribute to the development of such strategies. In this work, we used a high-resolution label-free MS(E) proteomic approach to identify differential protein expression in the CML bone marrow plasma of responsive and resistant patients. Oxidative lipid metabolism and regulation of the switch from canonical to noncanonical WNT signaling may contribute to CML resistance in the bone marrow compartment.  相似文献   

9.
For drug development and pharmaceutical research, targeting the molecular abnormalities is considered as a new challenge. A number of diseases including cancer are linked to perturbation of tyrosine kinase (TK). Imatinib (Glivec or Gleevec, Novartis), the most potent inhibitor of c-abl TK, was recently developed. This molecule has been approved in the treatment of chronic myeloid leukemia (CML). However, emergence of clinical resistance regarding a low rate of CML patients leads to intensive research. In the current article, we discuss the data and the mechanism of the resistance phenomenon. This review illustrates the important requirement to transfer back the information from patient to laboratory in order to improve future drug design.  相似文献   

10.
Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them.  相似文献   

11.
The tyrosine kinase inhibitor imatinib is successfully used in the treatment of chronic myeloid leukemia, but the occurrence of resistance phenomena can significantly limit therapeutic impact. Imatinib shows synergistic effects with cisplatin, suggesting that the coadministration of different cytostatics might reestablish the efficacy of treatment. We recently demonstrated that cobalt alkyne (or acetylenehexacarbonyldicobalt) complexes induce antiproliferative activity in human leukemia and lymphoma cells. The present study evaluates the effects of cobalt alkyne compounds containing propargylic acid esters on human acute (HL-60) and chronic myeloid (LAMA-84 and CML-T1) leukemia cell lines. The cell growth inhibitory activities (IC(50) values of 9.5 microM and higher) and induction of apoptosis (maximum 5.5-fold increase of single-stranded DNA at a drug concentration of 50 microM) achieved with the single agents were moderate. Interestingly, suboptimal concentrations of the cobalt complexes (10 microM) together with imatinib (0.1 microM), when coadministered, showed an additive or synergistic effect on cellular proliferation inhibition. The most promising results were obtained with complexes containing ligands derived from the nonsteroidal antiinflammatory drugs acetylsalicylic acid and naproxene.  相似文献   

12.
The success of tyrosine kinase inhibitors in treating chronic myeloid leukemia highlights the potential of targeting oncogenic kinases with small molecules. By using drug activity profiles and individual patient genotypes, one can guide personalized therapy selection for patients with resistance.  相似文献   

13.
Imatinib mesylate is a selective tyrosine kinase inhibitor that is successfully used in the treatment of chronic myeloid leukaemias and gastrointestinal stromal tumours. The drug is taken orally on a daily basis in order to suppress tumour growth. Unfortunately, the vast majority of patients will eventually progress while on therapy. It is generally thought that this acquired unresponsiveness is due to gene amplification or somatic mutations in the drug’s target genes. However, we have now evidence, based on several in vitro and in vivo observations suggesting that pharmacokinetic resistance may also play a definitive role in the ultimate resistance of patients on chronic imatinib. Our findings may have serious implications for the chronic imatinib treatment of cancer patients.  相似文献   

14.
The constitutively activated Abl tyrosine kinase domain of the chimeric Bcr-Abl oncoprotein is responsible for the transformation of haematopoietic stem cells and the symptoms of chronic myeloid leukaemia (CML). Imatinib targets the tyrosine kinase activity of Bcr-Abl and is a first-line therapy for this malignancy. Although highly effective in chronic phase CML, patients who have progressed to the advanced phase of the disease frequently fail to respond to imatinib or develop resistance to therapy and relapse. This is often due to the emergence of clones expressing mutant forms of Bcr-Abl, which exhibit a decreased sensitivity towards inhibition by imatinib. Considerable progress has recently been made in understanding the structural biology of Abl and the molecular basis for resistance, facilitating the discovery and development of second generation drugs designed to combat mutant forms of Bcr-Abl. The first of these compounds to enter clinical development were BMS-354825 (BristolMyersSquibb) and AMN107 (Novartis Pharma) and, from Phase I results, both of these promise a breakthrough in the treatment of imatinib-resistant CML. Recent advances with these and other promising classes of new CML drugs are reviewed.  相似文献   

15.
Recently, clinical studies of new drugs development to target specific forms of cancer were reported. Herceptin, a monoclonal antibody against the Her2/neu receptor tyrosine kinase, prolonged the survival of women with Her2/neu positive metastatic breast cancer. STI571, a small molecule inhibitor of the BCR/ABL, c-Kit and platelet derived growth factor receptor tyrosine kinase, produced pronounced clinical responses in patients with BCR/ABL positive chronic myeloid leukemia and c-Kit positive gastrointestial stromal tumors. In order to consider the use of the inhibitor of tyrosine kinases activity as anticancer drug, their mechanisms of the oncogenic activation and their impact on tumor transformation should be studied. The treatment with tyrosine kinase inhibitors such as STI571 or herceptin was a spectacular clinical success which stimulated research on the structure and function of both kinases and their inhibitors.  相似文献   

16.
Preliminary data are available about bone marrow (BM) changes in patients with chronic myeloid leukemia (CML) who received the molecularly targeted and highly effective tyrosine kinase inhibitor Imatinib mesylate (STI571). This review is focused on a systematic assessment of BM features detectable at different stages of CML (stable, accelerated, blastic) following long-term (more than 10 months) treatment. By applying enzyme- and immunohistochemistry including monoclonal antibodies visualizing proliferating cell nuclear antigen (PCNA) and apoptosis (anti-apostatin), a more elaborate insight into alterations affecting hematopoiesis and the stroma compartment was gained. In patients with stable-phase CML therapy resulted in a significant reduction in cellularity, neutrophil granulopoiesis and number of megakaryocytes, accompanied by a retrieval of erythroid precursors. In patients with Imatinib as the only treatment morphometric analysis of CD61+ megakaryopoiesis was in keeping with a significant decrease in maturation defects implying a lesser amount of atypical micromegakaryocytes almost consistent with normalization. Moreover, a reduction of the initially enhanced (CD34+) microvessel density was detectable associated with a decrease in luminal distension. Regression of marked to moderate myelofibrosis was recognizable in about 70% of patients especially in the accelerated and blastic phases. The amount of myeloblasts, CD34+ progenitor cells and lysozyme-expressing immature myelomonocytic cells declined with treatment, but recurred in about 19% of patients that developed a leukemic relapse after 21+/-6 months of therapy. Data on proliferative activity and apoptosis in general supported in vitro findings concerning the inhibitory effect of this agent on growth associated with a tendency for stimulated apoptosis, at least in responding patients.  相似文献   

17.
Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR1–72 mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.  相似文献   

18.
19.
A series of 3-substituted benzamide derivatives structurally related to STI-571 (imatinib mesylate), a Bcr-Abl tyrosine kinase inhibitor used to treat chronic myeloid leukemia (CML), was prepared and evaluated for antiproliferative activity against the Bcr-Abl-positive leukemia cell line K562. About ten 3-halogenated and 3-trifluoromethylated benzamide derivatives were identified as highly potent Bcr-Abl kinase inhibitors. One of these, NS-187 (9b), is a promising new candidate Bcr-Abl inhibitor for the therapy of STI-571-resistant chronic myeloid leukemia.  相似文献   

20.
The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant. Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号