首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic inflammation often precedes or accompanies a substantial number of cancers. Indeed, anti-inflammatory therapies have shown efficacy in cancer prevention and treatment. The exact mechanisms that turn a wound healing process into a cancer precursor are topics of intense research. A pathogenic link has been identified between inflammatory mediators, inflammation related gene polymorphisms and carcinogenesis. Animal models of cancer have been instrumental in demonstrating the diversity of mechanisms through which every tumor compartment and tumor stage may be affected by the underlying inflammatory process. In this review, we focus on the interaction between chronic inflammation, tumor stem cells and the tumor microenvironment. We summarize the proposed mechanisms that lead to the recruitment of bone marrow derived cells and explore the genetic and epigenetic alterations that may occur in inflammation associated cancers.  相似文献   

2.
Recruitment of neural stem cells (NSCs) represents an elegant strategy for replacing adult central nervous system (CNS) cells lost to injury or disease. However, except in the rostral migratory stream to the olfactory bulb, the adult CNS harbors a relatively non permissive environment for motility of neural stem cells. This opens the possibility of therapeutic enhancement of NSC motility towards sites of CNS injury or disease. The Epidermal Growth Factor Receptor (EGFR) is involved in the activation of a number of downstream pathways that regulate the phenotype of progenitor cells. Activated EGFR tyrosine kinase activity enhances NSC migration, proliferation, and survival. However, EGFR signaling is also known to play a role in the most malignant and highly invasive of human tumors, glioblastoma multiforme (GBM). Recent evidence supports the theory that GBM derives from a 'cancer stem cell' and that EGFR signals are commonly altered in these precursor cells. This article will review the role of EGFR signaling as it relates to neural stem cell motility and invasion. The duality of altered EGFR signaling in neural progenitor cells is discussed and opportunities for enhancing the recruitment of adult progenitors, and consequences of altering EGFR signaling in progenitor cells will be highlighted.  相似文献   

3.
How adult stem cell populations are recruited for tissue renewal and repair is a fundamental question of biology. Mobilization of stem cells out of their niches followed by correct migration and differentiation at a site of tissue turnover or injury are important requirements for proper tissue maintenance and regeneration. However, we understand little about the mechanisms that control this process, possibly because the best studied vertebrate adult stem cell systems are not readily amenable to in vivo observation. Furthermore, few clear examples of the recruitment of fully potent stem cells, compared with limited progenitors, are known. Here, we show that planarian stem cells directionally migrate to amputation sites during regeneration. We also show that during tissue homeostasis they are stationary. Our study not only uncovers the existence of specific recruitment mechanisms elicited by amputation, but also sets the stage for the systematic characterization of evolutionarily conserved stem cell regulatory processes likely to inform stem cell function and dysfunction in higher organisms, including humans.  相似文献   

4.
The therapeutic potential of neural stem cells   总被引:10,自引:0,他引:10  
Recent evidence shows that transplantation of neural stem/precursor cells may protect the central nervous system from inflammatory damage through a 'bystander' mechanism that is alternative to cell replacement. This novel mechanism, which might improve the success of transplantation procedures, is exerted by undifferentiated neural stem cells, the functional characteristics of which are regulated by important stem cell regulators released by CNS-resident and blood-borne inflammatory cells. Here, we discuss this alternative bystander mechanism in the context of the atypical ectopic perivascular niche. We propose that it is the most challenging example of reciprocal therapeutic crosstalk between the inflamed CNS and systemically transplanted neural stem cells.  相似文献   

5.
Diffusely infiltrating astrocytic tumours of the central nervous system (CNS) are the most frequent intracranial neoplasms and account for more than 60% of all primary brain tumours in man. Until recently, it was generally accepted that the glial component of the mature CNS, consisted of differentiated astrocytes, ependymal cells, oligodendrocytes and the non-neuro-ectodermal microglial cells. There exists a recently recognised population of glial cells that express the NG2 proteoglycan (NG2 cells). NG2 cells are dynamic and undergo rapid morphological changes in response to a variety of CNS pathologies. They are highly motile cells, which interact with various extracellular matrix (ECM) in association with the integrin receptors. During angiogenesis and response to tissue injury, NG2 precursor cells are recruited to sites where vessel growth and repair are occurring. NG2 is over-expressed by both tumour cells and pericytes on the blood vessels of malignant brain tumours. The function of NG2 cells in the CNS, and the notion of them as a source of and/or lineage marker for some gliomas are discussed. In addition, their possible role in glioma angiogenesis, proliferation and invasion will be considered as will their value in provision of targets for clinical and pre-clinical therapeutic strategies in brain tumours.  相似文献   

6.
Stem cells and brain cancer   总被引:15,自引:0,他引:15  
  相似文献   

7.
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.  相似文献   

8.
Although both self- and pathogen-specific T cells can participate in tissue destruction, recent studies have proposed that after viral infection, bystander T cells of an irrelevant specificity can bypass peptide-MHC restriction and contribute to undesired immunopathological consequences. To evaluate the importance of this mechanism of immunopathogenesis, we determined the relative contributions of Ag-specific and bystander CD8+ T cells to the development of CNS disease. Using lymphocytic choriomeningitis virus (LCMV) as a stimulus for T cell recruitment into the CNS, we demonstrate that bystander CD8+ T cells with an activated surface phenotype can indeed be recruited into the CNS over a chronic time window. These cells become anatomically positioned in the CNS parenchyma, and a fraction aberrantly acquires the capacity to produce the effector cytokine, IFN-gamma. However, when directly compared with their virus-specific counterparts, the contribution of bystander T cells to CNS damage was insignificant in nature (even when specifically activated). Although bystander T cells alone failed to cause tissue injury, transferring as few as 1000 naive LCMV-specific CD8+ T cells into a restricted repertoire containing only bystander T cells was sufficient to induce immune-mediated pathology and reconstitute a fatal CNS disease. These studies underscore the importance of specific T cells in the development of immunopathology and subsequent disease. Because of highly restrictive constraints imposed by the host, it is more likely that specific, rather than nonspecific, bystander T cells are the active participants in T cell-mediated diseases that afflict humans.  相似文献   

9.
The use of stem cells as a vehicle of therapeutic genes is an attractive approach for the development of new antitumoral strategies based on gene therapy. The aim of our study was to assess the potential of bone marrow-derived Multipotent Adult Progenitor Cells (rMAPCs) to differentiate in vitro and in vivo into endothelial cells and to be recruited to areas of tumor vasculogenesis. In vitro, rMAPCs obtained from Buffalo rats differentiated into cells expressing endothelial markers and demonstrated functional endothelial capacity. Intravenous injection of undifferentiated rMAPC transduced with a lentivirus expressing GFP in an orthotopic rat model of hepatocellular carcinoma, resulted in tumor recruitment of the injected cells and in vivo differentiation into endothelial cells in the tumor area with contribution to vasculogenesis. In summary, our results suggest that rMAPCs can be efficiently recruited by vascularized tumors and differentiate to endothelium and thus may represent a useful vehicle for delivery of therapeutic genes to sites of active tumor neovascularization.  相似文献   

10.
It is widely believed that cellular senescence is a tumor suppressor mechanism; however, it has not been understood why it is advantageous for organisms to retain mutant cells is a postmitotic state rather than simply eliminating them by apoptosis. It has recently been proposed that the primary role of cellular senescence is in mitotic compartments of fixed size in which spatial considerations dictate that a deleted cell is replaced by a neighboring cell. In these situations, rather than eliminating the neoplastic clone, deletion of mutant cells can paradoxically lead to their increased turnover. If mutant cells become senescent, then the compartment is instead progressively filled by senescent cells until the mutant clone is eliminated. Since most of the genetic alterations responsible for malignancy arise in stem cells, this mechanism may have particular relevance to the stem cell niche. In this article the implications of this hypothesis are examined in detail and related to experimental results. It is further proposed here that blockage of stem cell niches by senescent stem cells may account for some of the functional alterations observed in stem cell compartments at old age. Clearly, the existence of senescent stem cells is central to the proposed hypothesis, and although there is preliminary evidence for this assertion it has yet to be proven in vivo. An experimental strategy involving double labeling of stem cells with a nucleotide label is described that can address this question.  相似文献   

11.
Bone marrow-derived stromal cells (BMSC) possess a population of vascular progenitor cells that enable them to acquire a histology and immunophenotype coherent with endothelial cells (EC). Recent evidence indicates that a hypoxic environment such as that encountered in tumor masses regulates BMSC angiogenic properties by pathways that remain to be defined. It is also unclear as to what extent these marrow-derived precursor cells could contribute to the growth of endothelium-lined vessels at the vicinity of tumor masses. In this study, we found that BMSC exhibited the ability to generate three-dimensional capillary-like networks on Matrigel, and that this property was up-regulated by growth factors-enriched conditioned media isolated from several tumor-derived cell lines. In particular, basic fibroblast growth factor, a key mediator of angiogenesis, was found to be the most potent growth factor for inducing BMSC proliferation, migration, and tubulogenesis. The setup of a new two-dimensional in vitro co-culture assay further showed that BMSC were massively recruited when cultured in the presence of either cancerous or differentiated EC lines. In vivo, subcutaneous co-injection of BMSC with U-87 glioma cells in nude mice resulted in the formation of highly vascularized tumors, where BMSC differentiated into CD31-positive cells and localized at the lumen of vascular structures. Our data suggest that BMSC could be recruited at the sites of active tumor neovascularization through paracrine regulation of their angiogenic properties. These observations may have crucial implications in the development of novel therapies using BMSC engineered to secrete anti-cancerous agents and to antagonize tumor progression.  相似文献   

12.
Remyelination is a regenerative process in the central nervous system (CNS) that produces new myelin sheaths from adult stem cells. The decline in remyelination that occurs with advancing age poses a significant barrier to therapy in the CNS, particularly for long-term demyelinating diseases such as multiple sclerosis (MS). Here we show that remyelination of experimentally induced demyelination is enhanced in old mice exposed to a youthful systemic milieu through heterochronic parabiosis. Restored remyelination in old animals involves recruitment to the repairing lesions of blood-derived monocytes from the young parabiotic partner, and preventing this recruitment partially inhibits rejuvenation of remyelination. These data suggest that enhanced remyelinating activity requires both youthful monocytes and other factors, and that remyelination-enhancing therapies targeting endogenous cells can be effective throughout life.  相似文献   

13.
Immortalization of precursor cells from the mammalian CNS   总被引:28,自引:0,他引:28  
K Frederiksen  P S Jat  N Valtz  D Levy  R McKay 《Neuron》1988,1(6):439-448
Recent studies show that the nervous system contains many molecularly distinct cell types. Clonal cell marking experiments demonstrate that different cell types in some areas of the CNS are products of a multipotential stem cell. The factors controlling the differentiation of vertebrate CNS precursor cells would be more accessible to molecular analysis if cell lines with precursor properties could be established. Here we show that cell lines expressing an antigenic marker specific for a major brain precursor cell population can be established from rat cerebellum. We demonstrate that cell lines express the precursor, neuronal or glial properties depending on the growth conditions. This work supports the view that brain precursor cells expressing the marker Rat 401 are multipotential and can differentiate into cells with either neuronal or glial properties. Cell lines capable of differentiation should be useful in defining the signaling systems generating the cell types of the brain.  相似文献   

14.
Wing and leg precursors of Drosophila are recruited from a common pool of ectodermal cells expressing the homeobox gene Dll. Induction by Dpp promotes this cell fate decision toward the wing and proximal leg. We report here that the receptor tyrosine kinase EGFR antagonizes the wing-promoting function of Dpp and allows recruitment of leg precursor cells from uncommitted ectodermal cells. By monitoring the spatial distribution of cells responding to Dpp and EGFR, we show that nuclear transduction of the two signals peaks at different position along the dorsoventral axis when the fates of wing and leg discs are specified and that the balance of the two signals assessed within the nucleus determines the number of cells recruited to the wing. Differential activation of the two signals and the cross talk between them critically affect this cell fate choice.  相似文献   

15.
Down-modulation of the schistosome egg-induced granulomatous response involves various interacting subsets of T suppressor (TS) lymphocytes. In the present study the inductive phase of the process of modulation was analyzed. A soluble, I-J+ granuloma TS cell recruiting factor (Gr-TSRF) derived from spleen cells of chronically infected mice is described. This factor eluted from immunoabsorbent columns coupled with anti-I-Jk alloantisera induced the recruitment and expansion of antigen-specific I-J+ TS cells from a TS precursor cell population in the spleens of acutely infected mice. The recruited TS cells suppressed the granulomatous response of normal recipients in a 2-day adoptive transfer model. The antigenic specificity of the recruited TS cells was demonstrated by their inability to suppress KLH-induced artificial granulomatous response. This mechanism of recruitment described in the current study and illustrated by adoptive transfer experiments is likely to be active in vivo in initiating the process of spontaneous modulation. The I-J+ Gr-TSRF and the I-J+ TS cell described in this paper, together with the previously described H-2 restricted I-C+ factor and the subsets of TS cells (THs, TSe, TSpr), indicate the existence of an intricate, regulatory pathway(s) that operates during the modulation of the granulomatous response.  相似文献   

16.
Human Mesenchymal Stem Cells Signals Regulate Neural Stem Cell Fate   总被引:12,自引:0,他引:12  
Neural stem cells (NSCs) differentiate into neurons, astrocytes and oligodendrocytes depending on their location within the central nervous system (CNS). The cellular and molecular cues mediating end-stage cell fate choices are not completely understood. The retention of multipotent NSCs in the adult CNS raises the possibility that selective recruitment of their progeny to specific lineages may facilitate repair in a spectrum of neuropathological conditions. Previous studies suggest that adult human bone marrow derived mesenchymal stem cells (hMSCs) improve functional outcome after a wide range of CNS insults, probably through their trophic influence. In the context of such trophic activity, here we demonstrate that hMSCs in culture provide humoral signals that selectively promote the genesis of neurons and oligodendrocytes from NSCs. Cell–cell contacts were less effective and the proportion of hMSCs that could be induced to express neural characteristics was very small. We propose that the selective promotion of neuronal and oligodendroglial fates in neural stem cell progeny is responsible for the ability of MSCs to enhance recovery after a wide range of CNS injuries. Special issue dedicated to Anthony Campagnoni.  相似文献   

17.
Remyelination in the CNS: from biology to therapy   总被引:1,自引:0,他引:1  
Remyelination involves reinvesting demyelinated axons with new myelin sheaths. In stark contrast to the situation that follows loss of neurons or axonal damage, remyelination in the CNS can be a highly effective regenerative process. It is mediated by a population of precursor cells called oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, despite its efficiency in experimental models and in some clinical diseases, remyelination is often inadequate in demyelinating diseases such as multiple sclerosis (MS), the most common demyelinating disease and a cause of neurological disability in young adults. The failure of remyelination has profound consequences for the health of axons, the progressive and irreversible loss of which accounts for the progressive nature of these diseases. The mechanisms of remyelination therefore provide critical clues for regeneration biologists that help them to determine why remyelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.  相似文献   

18.
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the ‘size principle’, governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.  相似文献   

19.
Adult bone marrow is a rich reservoir of hematopoietic and vascular stem and progenitor cells. Mobilization and recruitment of these cells are essential for tissue revascularization. Physiological stress, secondary to tissue injury or tumor growth, results in the release of angiogenic factors, including vascular endothelial growth factor (VEGF), which promotes mobilization of stem cells to the circulation, contributing to the formation of functional vasculature. VEGF interacts with its receptors, VEGFR2 and VEGFR1, expressed on endothelial and hematopoietic stem cells, and thereby promotes recruitment of these cells to neo-angiogenic sites, accelerating the revascularization process. The mobilization of stem cells from marrow is a dynamic process, regulated by shear stress imparted by blood flow, and the activation of metalloproteinases that induce the release of 'Kit ligand', facilitating egress from the marrow to the circulation. Identification of the molecular pathways that support the proliferation and differentiation of vascular stem and progenitor cells will open up new avenues for the design of clinical trials to accelerate tissue vascularization and organogenesis.  相似文献   

20.
Regeneration-based therapies for spinal cord injuries   总被引:2,自引:1,他引:1  
Although it has been long believed that the damaged central nervous system does not regenerate upon injury, there is an emerging hope for regeneration-based therapy of the damaged central nervous system (CNS) due to the progress of developmental biology and regenerative medicine including stem cell biology. In this review, we have summarized recent studies aimed at the development of regeneration-based therapeutic approaches for spinal cord injuries, including therapy with anti-inflammatory cytokines, transplantation of neural stem/precursor cells and induction of axonal regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号