首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cell invasion is a key step in angiogenic blood vessel formation. Sphingosine-1-phosphate (S1P) has been previously reported to play a role in endothelial cell proliferation, survival, migration, and angiogenesis. Here, we examine the ability of S1P to regulate human endothelial cell invasion into three-dimensional collagen or fibrin matrices. We show that S1P potently stimulated human endothelial cell invasion, lumen formation, and branching morphogenesis in collagen, and fibrin matrices, (5- and 15-fold increases in invasion were observed, respectively). The S1P-induced invasion response was pertussis-toxin sensitive and completely dependent on integrins. Addition of integrin blocking reagents revealed that the alpha2beta1 integrin regulated invasion in collagen matrices, while a combination of alphavbeta3 and alpha5beta1 integrins regulated invasion in fibrin. Additionally, the S1P-induced invasion response was dependent on matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinase-3 (TIMP-3) was the only physiologic inhibitor of metalloproteinases that completely inhibited the potent stimulation of invasion induced by S1P. In contrast, TIMP-1 had no blocking effect on invasion or morphogenesis, while TIMP-2 and TIMP-4 partially reduced invasion but completely blocked lumen formation events. Collectively, these data reveal a marked ability of S1P to induce metalloproteinase- and integrin-dependent human endothelial cell invasion and morphogenesis in both collagen and fibrin three-dimensional matrices, the two most physiologically relevant matrices for angiogenesis.  相似文献   

2.
Summary Here, we describe assay systems that utilize serum-free defined media to evaluate capillary morphogenesis during human endothelial cell (EC) invasion of three-dimensional collagen matrices. ECs invade these matrices over a 1–3-d period to form capillary tubes. Blocking antibodies to the α2β1 integrin interfere with invasion and morphogenesis while other integrin blocking antibodies do not. Interestingly, we observed increased invasion of ECs toward a population of underlying ECs undergoing morphogenesis. In addition, we have developed assays on microscope slides that display the invasion process horizontally, thereby enhancing our ability to image these events. Thus far, we have observed intracellular vacuoles that appear to regulate the formation of capillary lumens, and extensive cell processes that facilitate the interconnection of ECs during morphogenic events. These assays should enable further investigation of the morphologic steps and molecular events controlling human capillary tube formation in three-dimensional extracellular matrices.  相似文献   

3.
Human mesenchymal stem or stromal cell (hMSC) therapies have promise across a wide range of diseases. However, inefficient cell delivery and low cell survival at injury sites reduce efficacy and are the major barriers in hMSC‐based therapy. Formation of three‐dimensional (3D) hMSC aggregates has been found to activate hMSC functions from enhancing secretion of therapeutic factors for improving cell migration and survival. As the stromal cells in bone marrow, hMSCs are significant sources of extracellular matrix (ECM) proteins and growth factors, which form an interactive microenvironment to influence hMSC fate via paracrine and autocrine actions. To date, however, the impact of the extracellular microenvironment on hMSC properties in the aggregates remains unknown. In the present study, we investigated the role of endogenous ECM matrices on hMSC aggregate formation and survival under ischemic stress. The results demonstrated that the preservation of endogenous ECM in the aggregates formed by thermal lifting (termed TLAs) as opposed to the aggregates formed by enzymatically detached hMSCs (termed EDAs) enhanced cell proliferation, multilineage potential, and survival under ischemic stress. The improved cell proliferation and viability in the TLAs is attributed to the incorporation of endogenous ECM proteins in the TLAs and their promitotic and antioxidant properties. The results demonstrate a novel method for the formation of hMSC aggregates via thermal responsive surface and highlight the significant contribution of the ECM in preserving hMSC properties in the 3D aggregates. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 441–451, 2013  相似文献   

4.
SAS-6 proteins are thought to impart the ninefold symmetry of centrioles, but the mechanisms by which their assembly occurs within cells remain elusive. In this paper, we provide evidence that the N-terminal, coiled-coil, and C-terminal domains of HsSAS-6 are each required for procentriole formation in human cells. Moreover, the coiled coil is necessary and sufficient to mediate HsSAS-6 centrosomal targeting. High-resolution imaging reveals that GFP-tagged HsSAS-6 variants localize in a torus around the base of the parental centriole before S phase, perhaps indicative of an initial loading platform. Moreover, fluorescence recovery after photobleaching analysis demonstrates that HsSAS-6 is immobilized progressively at centrosomes during cell cycle progression. Using fluorescence correlation spectroscopy and three-dimensional stochastic optical reconstruction microscopy, we uncover that HsSAS-6 is present in the cytoplasm primarily as a homodimer and that its oligomerization into a ninefold symmetrical ring occurs at centrioles. Together, our findings lead us to propose a mechanism whereby HsSAS-6 homodimers are targeted to centrosomes where the local environment and high concentration of HsSAS-6 promote oligomerization, thus initiating procentriole formation.  相似文献   

5.
6.
Multiple angiogenic cues modulate phosphotyrosine signaling to promote vasculogenesis and angiogenesis. Despite its functional and clinical importance, how vascular cells integrate phosphotyrosine-dependent signaling to elicit cytoskeletal changes required for endothelial morphogenesis remains poorly understood. The family of Nck adaptors couples phosphotyrosine signals with actin dynamics and therefore is well positioned to orchestrate cellular processes required in vascular formation and remodeling. Culture of endothelial cells in three-dimensional collagen matrices in the presence of VEGF stimulation was combined with molecular genetics, optical imaging, and biochemistry to show that Nck-dependent actin remodeling promotes endothelial cell elongation and proper organization of VE-cadherin intercellular junctions. Major morphogenetic defects caused by abrogation of Nck signaling included loss of endothelial apical-basal polarity and impaired lumenization. Time-lapse imaging using a Förster resonance energy transfer biosensor, immunostaining with phospho-specific antibodies, and GST pull-down assays showed that Nck determines spatiotemporal patterns of Cdc42/aPKC activation during endothelial morphogenesis. Our results demonstrate that Nck acts as an important hub integrating angiogenic cues with cytoskeletal changes that enable endothelial apical-basal polarization and lumen formation. These findings point to Nck as an emergent target for effective antiangiogenic therapy.  相似文献   

7.
Tube and lumen formation are essential steps in forming a functional vasculature. Despite their significance, our understanding of these processes remains limited, especially at the cellular and molecular levels. In this study, we analyze mechanisms of angioblast coalescence in the zebrafish embryonic midline and subsequent vascular tube formation. To facilitate these studies, we generated a transgenic line where EGFP expression is controlled by the zebrafish flk1 promoter. We find that angioblasts migrate as individual cells to form a vascular cord at the midline. This transient structure is stabilized by endothelial cell-cell junctions, and subsequently undergoes lumen formation to form a fully patent vessel. Downregulating the VEGF signaling pathway, while affecting the number of angioblasts, does not appear to affect their migratory behavior. Our studies also indicate that the endoderm, a tissue previously implicated in vascular development, provides a substratum for endothelial cell migration and is involved in regulating the timing of this process, but that it is not essential for the direction of migration. In addition, the endothelial cells in endodermless embryos form properly lumenized vessels, contrary to what has been previously reported in Xenopus and avian embryos. These studies provide the tools and a cellular framework for the investigation of mutations affecting vasculogenesis in zebrafish.  相似文献   

8.
Artificial extracellular matrix (ECM) proteins have been designed that have strong cell-adhesive activity and active functional units that inhibit network formation among vascular endothelial cells. A laminin-derived sequence (YIGSR) that blocks migration of vascular endothelial cells was designed to incorporate into an elastin-derived structural unit. The designed ECM fusion protein also had a cell-adhesive RGDN sequence that conferred an intense migration-inhibitory effect. The resultant ECM showed cell-adhesive activity superior to that of the synthetic YIGSR peptide and it blocked the migration of vascular endothelial cells. Furthermore, the designed ECM inhibited the angiogenic activity of a collagen gel. The engineering strategy of designing multi-functional ECM proteins could be applied to support novel tissue engineering techniques.  相似文献   

9.
The effect of methylmercury chloride (MeHg) on growth and tube formation by cultured human umbilical vein endothelial cells (HUVECs) was investigated. HUVECs were collected by enzymatic digestion with collagenase. Precultivation of HUVECs with MeHg at concentrations of 1.0–50.0 mol/L exerted negligible effects on the viable cell number, while the viable cell number was slightly reduced at 100 mol/L and fell to zero at concentrations exceeding 500.0 mol/L MeHg. The viable cell number was depressed in a concentration-dependent manner. Tube formation was studied by culturing the cells on gelled basement membrane matrix (Matrigel). Treatment of HUVECs with 0.1–5.0 mol/L MeHg for 24 h inhibited tube formation dose-dependently. Fetal bovine serum (FBS) increased tube formation in a dose-dependent manner, with half-maximum stimulation of tube formation at approximately 3.4% FBS. The length of tube formation decreased time-dependently at concentrations of 0.1 and 1.0 mol/L MeHg. Pretreatment of Matrigel with 1 mol/L MeHg before the cell seeding reduced the tube formation by HUVECs. These results suggest that the growth and tube formation by HUVECs is susceptible to MeHg cytotoxicity, and that MeHg could be injurious to endothelial cell function.Abbreviations MeHg methylmercury chloride - HUVECs human umbilical vein endothelial cells  相似文献   

10.
N-acetylglucosamine (GlcNAc) is an abundant hexose that as a monomer or as part of macromolecules plays multiple roles in eukaryotic cells. Especially as a residue of oligo- and polysaccharides and conjugated with lipids and proteins, GlcNAc contributes to the function and architecture of extracellular matrices. Several human disorders caused by mutations in genes coding for enzymes dealing with GlcNAc have been identified. However, molecular aspects of their clinical picture are laborious to investigate and are mostly addressed in yeast and vertebrate cultured cells that as unicellular or artificial systems ultimately do not allow conclusive deductions for complex organisms. An excellent model system to study the biology of GlcNAc in a multi-cellular organism is the genetically, biochemically and physiologically manipulable fruitfly Drosophila melanogaster that despite the evolutionary distance shares basic features of GlcNAc biology with humans. The aim of this review is to summarise the use of GlcNAc both in mammals and in Drosophila by highlighting the molecular consequences of perturbing GlcNAc function.  相似文献   

11.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

12.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

13.
Mechanical interactions between cells and extracellular matrix (ECM) mediate epithelial cyst formation. This work relies on the combination of numerical modeling with live cell imaging, to piece together a novel nonintrusive method for determining three-dimensional (3D) mechanical forces caused by shape changes of a multicellular aggregate at the early stages of epithelial cyst formation. We analyzed the evolution of Madin-Darby canine kidney cells in 3D cultures using time-lapse microscopy, with type I collagen gel forming the ECM. The evolving 3D interface between the ECM and the cell aggregate was obtained from microscopy images, and the stress on the surface of a proliferating aggregate and in the surrounding ECM was calculated using the finite element method. The viscoelastic properties of the ECM (a needed input for the finite element method solver) were obtained through oscillatory shear flow experiments on a rheometer. For validation purpose, the forces exerted by an aggregate on a force-sensor array were measured and compared against the computational results.  相似文献   

14.
15.
The extracellular matrices (ECM) produced by cultured bovine corneal endothelial cells and chick embryo fibroblasts were compared for their induction of cell attachment, proliferation and differentiation. The corneal endothelial ECM (cECM) induced a comparable and rapid attachment and flattening of both human Ewing's sarcoma and colon carcinoma cells which utilize fibronectin and laminin as adhesive glycoproteins, respectively. In contrast, the ECM produced by fibroblasts (fECM) readily supported the attachment and flattening of Ewing's sarcoma cells but had only a small effect on the carcinoma cells. Vascular endothelial cells were stimulated to proliferate by both types of matrices, but to a lesser extent by the fECM. In contrast, the formation of a closely apposed, non-overlapping and contact-inhibited endothelial cell monolayer was only dictated by the cECM. Vascular endothelial cells cultured on fECM grew on top of each other and incorporated [3H]thymidine even late at confluency. Neurite outgrowth (ciliary ganglion cells) and network formation (adult rat oligodendrocytes) were promoted by both types of matrices but in a more consistent manner with the cECM. It is likely that the small amounts of laminin deposited by chick embryo fibroblasts into their ECM are responsible for its efficient induction of neurite outgrowth and for the limited degree of carcinoma cell attachment and flattening. It is thus demonstrated that differences in chemical composition and supramolecular arrangement between cECM and fECM result not only in differences in the attachment, spreading and proliferative responses of cells but also in the expression of their characteristic morphological appearance and differentiated functions.  相似文献   

16.
Endothelial cells play a crucial role in the pathogenesis of many diseases and are highly sensitive to low gravity conditions. Using a three-dimensional random positioning machine (clinostat) we investigated effects of simulated weightlessness on the human EA.hy926 cell line (4, 12, 24, 48 and 72 h) and addressed the impact of exposure to VEGF (10 ng/ml). Simulated microgravity resulted in an increase in extracellular matrix proteins (ECMP) and altered cytoskeletal components such as microtubules (alpha-tubulin) and intermediate filaments (cytokeratin). Within the initial 4 h, both simulated microgravity and VEGF, alone, enhanced the expression of ECMP (collagen type I, fibronectin, osteopontin, laminin) and flk-1 protein. Synergistic effects between microgravity and VEGF were not seen. After 12 h, microgravity further enhanced all proteins mentioned above. Moreover, clinorotated endothelial cells showed morphological and biochemical signs of apoptosis after 4 h, which were further increased after 72 h. VEGF significantly attenuated apoptosis as demonstrated by DAPI staining, TUNEL flow cytometry and electron microscopy. Caspase-3, Bax, Fas, and 85-kDa apoptosis-related cleavage fragments were clearly reduced by VEGF. After 72 h, most surviving endothelial cells had assembled to three-dimensional tubular structures. Simulated weightlessness induced apoptosis and increased the amount of ECMP. VEGF develops a cell-protective influence on endothelial cells exposed to simulated microgravity.  相似文献   

17.
Endothelial cells are subjected to biochemical and mechanical stimuli, which regulate their angiogenic potential. We determined the synergistic effects of sphingosine-1-phosphate (S1P) and fluid wall shear stress (WSS) on a previously established model of human umbilical vein endothelial cell invasion into three-dimensional collagen matrices. Collagen matrices were incorporated into a parallel-plate flow chamber to apply controlled WSS to the surface of endothelial monolayers over a period of 24 h. Cell invasion required the presence of S1P, with the effects of S1P being enhanced by shear stress to an extent comparable with S1P combined with angiogenic growth factor stimulation. The number of invading cells depended on the magnitude of shear stress, with a maximal induction at a shear stress of approximately 5 dyn/cm2, whereas the invasion distance was proportional to the magnitude of shear stress. The enhancement of invasion by 5.3 dyn/cm2 shear stress coincided with elevated phosphorylation of Akt and matrix metalloproteinase (MMP)-2 activation. Furthermore, invasion induced by the combined application of WSS and S1P was attenuated by inhibitors of MMPs (GM6001) and the phosphatidylinositol 3-kinase/Akt signaling pathway (wortmannin). These results provide evidence that shear stress is a positive modulator of S1P-induced endothelial cell invasion into collagen matrices through enhanced Akt and MMP-2 activation.  相似文献   

18.
Fibrin II induces endothelial cell capillary tube formation   总被引:11,自引:0,他引:11       下载免费PDF全文
We studied the formation of capillary tubes by endothelial cells which were sandwiched between two fibrin gels under serum-free conditions. After formation of the overlying fibrin gel, the endothelial cell monolayer rearranged into an extensive net of capillary tubes. Tube formation was apparent at 5 h and was fully developed by 24 h. The capillary tubes were vacuolated, and both intracellular and intercellular lumina were present. Maximal tube formation was observed with fibrin II (which lacks both fibrinopeptide A and B), minimal tube formation with fibrin I (which lacks only fibrinopeptide A), and complete absence of tube formation with fibrin 325 (which lacks the NH2- terminal beta 15-42 sequence, in addition to fibrinopeptides A and B). The inability of fibrin 325 to stimulate capillary tube formation supports the idea that beta 15-42 plays an important role in this process, and its importance was confirmed by the finding that exogenous soluble beta 15-42 inhibited fibrin II-induced capillary tube formation. This effect was specific for fibrin, since beta 15-42 did not inhibit tube formation by endothelial cells sandwiched between collagen gels. The interaction of the apical surface of the endothelial cell with the overlying fibrin II gel, as opposed to the underlying fibrin gel upon which the cells were seeded, was necessary for capillary tube formation. These studies suggest that the beta 15-42 sequence of fibrin interacts with a component of the apical cell surface and that this interaction plays a fundamental role in the induction of endothelial capillary tube formation.  相似文献   

19.
Localization of proteases to the surface of endothelial cells and remodeling of the extracellular matrix (ECM) are essential to endothelial cell tube formation and angiogenesis. Here, we partially localized active cathepsin B and its cell surface binding partners, S100A/p11 (p11) of the annexin II heterotetramer (AIIt), to caveolae of human umbilical vein endothelial cells (HUVEC). Via a live-cell proteolysis assay, we observed that degradation products of quenched-fluorescent (DQ)-proteins (i.e. gelatin and collagen IV) colocalized intracellularly with caveolin-1 (cav-1) of HUVEC grown in either monolayer cultures or in vitro tube formation assays. Activity-based probes that bind covalently to active cysteine cathepsins and degradation products of DQ-collagen IV partially localized to intracellular vesicles that contained cav-1 and active cysteine cathepsins. Biochemical analyses revealed that the distribution of active cathepsin B in caveolar fractions increased during in vitro tube formation. Pro-uPA, uPAR, MMP-2 and MMP-14, which have been linked with cathepsin B to ECM degradation pathways, were also found to increase in caveolar fractions during in vitro tube formation. Our findings are the first to demonstrate through live-cell imaging ECM degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation.  相似文献   

20.
Vasculogenesis is an important morphogenetic event for vascular tissue engineering and ischemic disease treatment. Stem and progenitor cells can contribute to vasculogenesis via endothelial differentiation and direct participation in blood vessel formation. In this study, we developed an implantable microfluidic device to facilitate formation of three-dimensional (3D) vascular structures by human endothelial progenitor cells (hEPCs). The microfluidic device was made of biodegradable poly(lactic-co-glycolic acid) (PLGA) using a microchannel patterned silicon wafer made by soft lithography. A collagen type I (Col I) hydrogel containing hEPCs filled the microfluidic channels to reconstitute a 3D microenvironment for facilitating vascular structure formation by hEPCs. The device seeded with hEPCs was implanted into the subcutaneous space of athymic mice and retrieved one and four weeks after implantation. Histology and immunohistochemistry revealed that hEPCs formed a 3D capillary network expressing endothelial cell-specific proteins in the channel of the PLGA microfluidic device. This result indicates that a 3D microscale extracellular matrix reconstituted in the microchannel can promote the endothelial differentiation of hEPCs and in turn hEPC-mediated vasculogenesis. The PLGA microfluidic device reported herein may be useful as an implantable tissue-engineering scaffold for vascularized tissue reconstruction and therapeutic angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号