首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
体外诱导人骨髓间充质干细胞向多巴胺神经元分化的研究   总被引:4,自引:0,他引:4  
通过体外诱导人骨髓间充质干细胞(bone marrow mesenchymal stemcells,BMSCs)向多巴胺(dopamine,DA)神经元分化,探讨人BMSCs来源的DA神经元的功能特征及其分化机制,为临床上细胞移植替代治疗诸如帕金森氏病(parkinson’sdisease,PD)等神经精神性疾病提供一种理想的细胞来源。通过密度梯度离心获取人骨髓中的单个核细胞,贴壁培养纯化BMSCs。50μmol/L脑源性神经营养因子(brain derivedneurotrophy factor,BDNF),10μmol/Lforskolin(FSK)和10μmol/LDA联合对BMSCs进行诱导。电子显微镜观察诱导2周后细胞是否具有神经元的超微结构特点;免疫细胞化学染色和RT-PCR检测DA神经元分化过程中的标志物酪氨酸羟化酶(tyrosine hydroxylase,TH)的表达以及转录因子Nurr1、Ptx3和Lmx1b的表达;高效液相色谱(highperformance liquid chromatogram,HPLC)检测诱导2周后的细胞多巴胺的释放水平。结果表明,诱导2周后,电镜下细胞胞浆中有大量密集的呈扁平囊状的粗面内质网及其间的一些游离核糖体以及神经微丝的形成。RT-PCR结果显示NSE(neuron specificenolase)、Nurr1、Ptx3、Lmx1b和TH的mRNA均有表达;免疫细胞化学染色结果表明诱导2周后TH阳性细胞(24·80±3·36)%的表达较诱导3d后(3·77±1·77)%明显提高(P<0·01);HPLC检测到诱导2周后的细胞DA释放水平[(1·22±0·36)μg/mL(n=6)]高于未经诱导的细胞[(0·75±0·22)μg/mL(n=6)(t=-2·79,P=0·038)]。由此得出,BDNF、FSK和DA可以在体外诱导人BMSCs向DA神经元分化,并具有DA神经元的功能特征,是临床用于治疗神经精神性疾病的理想细胞来源。  相似文献   

3.
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The motor symptoms of PD are caused by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta of mesencephalon. The causes for death of DA neurons are not well understood, but the strongest risk factor is increasing age. There is no cure currently available for PD, and treatment is limited to management of PD symptoms in patients. Primary DA neurons are virtually unobtainable from living patients and animal studies have proven inadequate for studying the mechanism of PD development. Pluripotent stem cells (PSC) are primary self‐renewing cells capable of differentiating into all cell types of an organism, including DA neurons. PSCs represent an abundant source of cells that can be genetically modified or isolated from patients with complex diseases, enabling the production of large quantities of DA neurons for disease modeling, drug screening, and gene function studies. Furthermore, since PD arises as a result of deterioration of DA neurons in a specific brain region, it has been suggested that a relatively small number of cells could restore normal function. PSCs could provide a source of DA neurons for cell replacement therapy. In this Prospects article, we focus on the development and in vitro derivation of DA neurons from PSCs, as well as current applications of the technological advances, with the emphasis on future directions and efforts in the field. J. Cell. Biochem. 113: 3610–3619, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
Neurotransmitters have been shown to control CNS neurogenesis, and GABA-mediated signaling is thought to be involved in the regulation of nearly all key developmental stages. Generation of dopaminergic (DA) neurons from stem/precursor cells for cell therapy in Parkinson's disease has become a major focus of research. However, the possible effects of GABA on generation of DA neurons from proliferating neurospheres of mesencephalic precursors have not been studied. In the present study, GABA(A), and GABA(B) receptors were found to be located in DA cells. Treatment of cultures with GABA did not cause significant changes in generation of DA cells from precursors. However, treatment with the GABA(A) receptor antagonist bicuculline (10(-5) M) led to a significant increase in the number DA cells, and treatment with the GABA(B) receptor antagonist CGP 55845 (10(-5) M) to a significant decrease. Simultaneous treatment with bicuculline and CGP 55845 did not induce significant changes. Apoptotic cell death studies and bromodeoxyuridine immunohistochemistry indicated that the aforementioned differences in generation of DA neurons are not due to changes in survival or proliferation of DA cells, but rather to increased or decreased differentiation of mesencephalic precursors towards the DA phenotype. The results suggest that these effects are exerted via GABA receptors located on DA precursors, and are not an indirect consequence of effects on the serotonergic or glial cell population. Administration of GABA(A) receptor antagonists in the differentiation medium may help to obtain higher rates of DA neurons for potential use in cell therapy for Parkinson's disease.  相似文献   

6.
Parkinson's disease (PD) involves the loss of dopamine (DA) neurons, making it the most expected neurodegenerative disease to be treated by cell replacement therapy. Stem cells are a promising source for cell replacement therapy due to their ability to self-renew and their pluripotency/multipotency that allows them to generate various types of cells. However, it is challenging to derive midbrain DA neurons from stem cells. Thus, in this review, I will discuss the molecular factors that are known to play critical roles in the generation and survival of DA neurons. The developmental process of DA neurons and functions of extrinsic soluble factors and homeodomain proteins, forkhead box proteins, proneural genes, Nurr1 and genes involved in epigenetic control are discussed. In addition, different types of stem cells that have potential for future cell replacement therapy are reviewed.  相似文献   

7.
Exogenous administration of various neurotrophic factors has been shown to protect neurons in animal model of Parkinson's disease (PD). Several attempts are being made to search a tissue source simultaneously expressing many of these neurotrophic factors. Carotid body (CB) contains oxygen-sensitive glomus cells rich in dopamine (DA) and expresses glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and neurotrophin-3. We have attempted to study the functional restoration following co-transplantation of CB cells and ventral mesencephalic cells (VMC) in a 6-hydroxydopamine-lesioned rat model of PD. A significant recovery (p < 0.001) in d-amphetamine-induced circling behavior (80%) and spontaneous locomotor activity (85%) was evident in co-transplanted animals at 12 weeks post-transplantation as compared to lesioned animals. Similarly, a significant (p < 0.001) restoration was observed in DA-D(2) receptor binding (77%), striatal DA (87%) and 3,4-dihydroxyphenylacetic acid (DOPAC) (85%) levels and nigral DA (75%) and DOPAC (74%) levels. Functional recovery was accompanied by tyrosine hydroxylase (TH) expression and quantification of TH-positive cells by image analysis revealed a significant restoration in TH-immunoreactive (IR) fiber density in striatum, as well as TH-IR neurons in substantia nigra pars compacta in co-transplanted animals over VMC-transplanted animals. The result suggests that co-transplantation of CB cells along with VMC provides better and long-term functional restoration in the rat model of PD, possibly by supporting the survival of newly grafted cells as well as remaining host DA neurons.  相似文献   

8.
The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.  相似文献   

9.
Human embryonic stem (hES) cells have the ability to renew themselves and differentiate into multiple cell types upon exposure to appropriate signals. In particular, the ability of hES cells to differentiate into defined neural lineages, such as neurons, astrocytes, and oligodendrocytes, is fundamental to developing cell-based therapies for neurodegenerative disorders and studying developmental mechanisms. However, the utilization of hES cells for basic and applied research is hampered by the lack of well-defined methods to maintain their self-renewal and direct their differentiation. Recently we reported that neural precursor (NP) cells derived from mouse ES cells maintained their potential to differentiate into dopaminergic (DA) neurons after significant expansion in vitro . We hypothesized that NP cells derived from hES cells (hES-NP) could also undergo the same in vitro expansion and differentiation. To test this hypothesis, we passaged hES-NP cells and analyzed their proliferative and developmental properties. We found that hES-NP cells can proliferate approximately 380 000-fold after in vitro expansion for 12 weeks and maintain their potential to generate Tuj1+ neurons, GFAP+ astrocytes, and O4+ oligodendrocytes as well as tyrosine hydroxylase-positive (TH+) DA neurons. Furthermore, TH+ neurons originating from hES-NP cells expressed other midbrain DA markers, including Nurr1, Pitx3, Engrail-1, and aromatic l -amino acid decarboxylase, and released significant amounts of DA. In addition, hES-NP cells maintained their developmental potential through long-term storage (over 2 years) in liquid nitrogen and multiple freeze–thaw cycles. These results demonstrate that hES-NP cells have the ability to provide an expandable and unlimited human cell source that can develop into specific neuronal and glial subtypes.  相似文献   

10.
The role of dopamine D2 and D3 receptors (D2R/D3R), located on midbrain dopaminergic (DA) neurons, in the regulation of DA synthesis and release and in DA neuron homeostasis has been extensively investigated in rodent animal models. By contrast, the properties of D2R/D3R in human DA neurons have not been elucidated yet. On this line, the use of human-induced pluripotent stem cells (hiPSCs) for producing any types of cells has offered the innovative opportunity for investigating the human neuronal phenotypes at the molecular levels. In the present study, hiPSCs generated from human dermal fibroblasts were used to produce midbrain DA (mDA) neurons, expressing the proper set of genes and proteins typical of authentic, terminally differentiated DA neurons. In this model, the expression and the functional properties of the human D2R/D3R were investigated with a combination of biochemical and functional techniques. We observed that in hiPSC-derived mDA neurons, the activation of D2R/D3R promotes the proliferation of neuronal progenitor cells. In addition, we found that D2R/D3R activation inhibits nicotine-stimulated DA release and exerts neurotrophic effects on mDA neurons that likely occur via the activation of PI3K-dependent mechanisms. Furthermore, D2R/D3R stimulation counteracts both the aggregation of alpha-synuclein induced by glucose deprivation and the associated neuronal damage affecting both the soma and the dendrites of mDA neurons. Taken together, these data point to the D2R/D3R-related signaling events as a biochemical pathway crucial for supporting both neuronal development and survival and protection of human DA neurons.  相似文献   

11.
12.
6-Hydroxydopamine (6-OHDA) causes selective degeneration of dopaminergic neurons in the rat brain and has been used to produce an animal model of Parkinsonism. Recently, a clonal line of immortalized dopamine (DA) neurons (1RB3AN27), which expresses varying levels of tyrosine hydroxylase, dopamine transporter, neuron specific enolase, and nestin, was established. These DA neurons reduce behavioral deficits in 6-OHDA-lesioned rats. The relative sensitivity of fetal and adult neurons to potential neurotoxins is not well defined. The availability of immortalized DA neurons provides a unique opportunity to compare the relative neurotoxicity of 6-OHDA in differentiated and undifferentiated DA neurons in vitro and identify neuroprotective agents. Our results showed that 6-OHDA treatment for 24 hr decreased the viability of undifferentiated and differentiated immortalized DA neurons in vitro, as determined by the MTT assay, and increased the rate of apoptosis in differentiated DA neurons. The differentiated DA neurons (IC50 = 33 microM) were about 2-fold more sensitive to 6-OHDA than undifferentiated DA neurons (IC50 = 75 microM) in cell culture. Similarly, the differentiated DA neurons were more sensitive to another neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), which is commonly used to induce Parkinsonism in animal models, than were the undifferentiated DA neurons in culture. Among growth factors tested, only glial cell line-derived neurotrophic factor (GDNF) partially protected differentiated DA neurons against 6-OHDA-induced toxicity. These results suggest that undifferentiated and differentiated immortalized DA neurons can be a useful experimental model to study relative sensitivity to neurotoxins and neuroprotective agents that could have relevance to fetal and adult neurons.  相似文献   

13.
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson’s disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.  相似文献   

14.
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA.  相似文献   

15.
Human embryonic stem cells (hESC) are emerging as an attractive alternative source for cell replacement therapy since they can be expanded in culture indefinitely and differentiated to any cell types in the body. Various types of biomaterials have also been used in stem cell cultures to provide a microenvironment mimicking the stem cell niche1-3. The latter is important for promoting cell-to-cell interaction, cell proliferation, and differentiation into specific lineages as well as tissue organization by providing a three-dimensional (3D) environment4 such as encapsulation. The principle of cell encapsulation involves entrapment of living cells within the confines of semi-permeable membranes in 3D cultures2. These membranes allow for the exchange of nutrients, oxygen and stimuli across the membranes, whereas antibodies and immune cells from the host that are larger than the capsule pore size are excluded5. Here, we present an approach to culture and differentiate hESC DA neurons in a 3D microenvironment using alginate microcapsules. We have modified the culture conditions2 to enhance the viability of encapsulated hESC. We have previously shown that the addition of p160-Rho-associated coiled-coil kinase (ROCK) inhibitor, Y-27632 and human fetal fibroblast-conditioned serum replacement medium (hFF-CM) to the 3D platform significantly enhanced the viability of encapsulated hESC in which the cells expressed definitive endoderm marker genes1. We have now used this 3D platform for the propagation of hESC and efficient differentiation to DA neurons. Protein and gene expression analyses after the final stage of DA neuronal differentiation showed an increased expression of tyrosine hydroxylase (TH), a marker for DA neurons, >100 folds after 2 weeks. We hypothesized that our 3D platform using alginate microcapsules may be useful to study the proliferation and directed differentiation of hESC to various lineages. This 3D system also allows the separation of feeder cells from hESC during the process of differentiation and also has potential for immune-isolation during transplantation in the future.  相似文献   

16.
Using Parkinson's disease as a prototype of neurodegenerative diseases, we propose applications of human stem cells in the development of therapeutics for neurodegenerative diseases. First, in vitro differentiation of human stem cells offers a versatile model for dissecting molecular interactions underlying human dopamine (DA) neuron specification, which may form a foundation for instigating regeneration of DA neurons from progenitors that reside in the brain. Second, stem cells derived from diseased cells or through genetic modification can serve as a platform for unraveling biochemical processes that lead to the cellular pathogenesis of degeneration. This may in turn serve as a template for identifying or developing therapeutics for slowing, stopping, or reversing the disease process. And finally, stem cells, particularly those induced from patients' own cells, provide a reliable source of DA neurons for cell-based therapy.  相似文献   

17.
18.
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease.  相似文献   

19.
The effects of acute and subchronic Rimcazole administration on A9 and A10 dopamine (DA) neurons were examined using extracellular single cell recording techniques. Intravenous injections of Rimcazole did not prevent or reverse the inhibition of firing rates of DA cells produced by DA agonist apomorphine (APO). Single intraperitoneal injection of Rimcazole decreased the number of spontaneously active DA cells in A10, but not in A9; it had no effect on the firing rate of DA neurons in either A9 or A10. Following prolonged administration of Rimcazole, 25 mg/kg/day for 28 days, there was a significant increase in the number of spontaneously active A10 DA neurons, but not A9 DA cells. The firing rate of both A9 and A10 DA cells decreased significantly following prolonged Rimcazole administration; however, the firing pattern of these cells did not change. In addition, chronic Rimcazole did not affect the ID50 of APO for DA neurons. These results suggest that Rimcazole has an indirect effect on DA neurons with a relative selectivity for A10 DA cells; it does not exhibit pharmacological profiles of previously reported antipsychotic drugs.  相似文献   

20.
Studies of Parkinson's disease (PD) have been hindered by lack of access to affected human dopaminergic (DA) neurons. Here, we report generation of induced pluripotent stem cells that carry the p.G2019S mutation (G2019S-iPSCs) in the Leucine-Rich Repeat Kinase-2 (LRRK2) gene, the most common PD-related mutation, and their differentiation into DA neurons. The high penetrance of the LRRK2 mutation and its clinical resemblance to sporadic PD suggest that these cells could provide a valuable platform for disease analysis and drug development. We found that DA neurons derived from G2019S-iPSCs showed increased expression of key oxidative stress-response genes and α-synuclein protein. The mutant neurons were also more sensitive to caspase-3 activation and cell death caused by exposure to stress agents, such as hydrogen peroxide, MG-132, and 6-hydroxydopamine, than control DA neurons. This enhanced stress sensitivity is consistent with existing understanding of early PD phenotypes and represents a potential therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号