首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanophycin is an attractive biopolymer with chemical and material properties that are suitable for industrial applications in the fields of food, medicine, cosmetics, nutrition, and agriculture. For efficient production of cyanophycin, considerable efforts have been exerted to characterize cyanophycin synthetases (CphAs) and optimize fermentations and downstream processes. In this paper, we review the characteristics of diverse CphAs from cyanobacteria and non-cyanobacteria. Furthermore, strategies for cyanophycin production in microbial strains, including Escherichia coli, Pseudomonas putida, Ralstonia eutropha, Rhizopus oryzae, and Saccharomyces cerevisiae, heterologously expressing different cphA genes are reviewed. Additionally, chemical and material properties of cyanophycin and its derivatives produced through biological or chemical modifications are reviewed in the context of their industrial applications. Finally, future perspectives on microbial production of cyanophycin are provided to improve its cost-effectiveness.  相似文献   

2.
Cyanophycin, inclusions in cyanobacteria discovered by the Italian scientist Borzi in 1887, were characterized as a polyamide consisting of aspartic acid and arginine. Its synthesis in cyanobacteria was analyzed regarding growth conditions, responsible gene product, requirements, polymer structure and properties. Heterologous expression of diverse cyanophycin synthetases (CphA) in Escherichia coli enabled further enzyme characterization. Cyanophycin is a polyamide with variable composition and physiochemical properties dependent on host and cultivation conditions in contrast to the extracellular polyamides poly-γ-glutamic acid and poly-ε-l-lysine. Furthermore, recombinant prokaryotes and transgenic eukaryotes, including plants expressing different cphA genes, were characterized as suitable for production of insoluble cyanophycin regarding higher yields and modified composition for other requirements and applications. In addition, cyanophycin was characterized as a source for the synthesis of polyaspartic acid or N-containing bulk chemicals and dipeptides upon chemical treatment or degradation by cyanophycinases, respectively. Moreover, water-soluble cyanophycin derivatives with altered amino acid composition were isolated from transgenic plants, yeasts and recombinant bacteria. Thereby, the range of dipeptides could be extended by biological processes and by chemical modification, thus increasing the range of applications for cyanophycin and its dipeptides, including agriculture, food supplementations, medical and cosmetic purposes, synthesis of the polyacrylate substitute poly(aspartic acid) and other applications.  相似文献   

3.
4.
Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis. Media containing protamylasse as the sole compound diluted only in water were therefore examined for their suitability in CGP production. Among various bacterial strains investigated in this study, a recombinant strain of Escherichia coli DH1 harboring plasmid pMa/c5-914::cphA6803, which carries the cyanophycin synthetase structural gene (cphA) from Synechocystis sp. strain PCC6803, was found to be most suitable. Various cultivation conditions for high CGP contents were first optimized in shake flask cultures. The optimized conditions were then successfully applied to 30- and 500-liter fermentation scales in stirred tank reactors. A maximum CGP content of 28% (wt/wt) CGP per cell dry matter was obtained in 6% (vol/vol) protamylasse medium at an initial pH of 7.0 within a cultivation period of only 24 h. The CGP contents obtained with this recombinant strain employing protamylasse medium were higher than those obtained with the same strain cultivated in mineral salts medium or in expensive commercial complex media such as Luria-Bertani or Terrific broth. It was shown that most amino acids present in the protamylasse medium were almost completely utilized by the cells during cultivation. Exceptions were alanine, tryptophan, tyrosine, and most interestingly, arginine. Furthermore, CGP was easily isolated from protamylasse-grown cells by applying the acid extraction method. The CGP exhibited a molecular mass of about 26 to 30 kDa and was composed of 50% (mol/mol) aspartate, 46% (mol/mol) arginine, and 4% (mol/mol) lysine. The use of cheap residual protamylasse could contribute in establishing an economically and also ecologically feasible process for the biotechnological production of CGP.  相似文献   

5.
Cyanophycin is non-ribosomally synthesized protein-like copolymer. Synthesis of cyanophycin is catalyzed by cyanophycin synthetase (CphA). In this study, a novel cyanophycin synthetase CphA49 belonging to NOR5 clade of Gammaproteobacteria was identified with primer-based screening from a deep-sea sediment metagenomic library. The cphA49 gene contained an open reading frame of 2,637 bp and encoded a protein with a predicted molecular mass of 100 kDa. A recombinant CphA49 was obtained by the functional expression of cphA49 in Escherichia coli BL21 (DE3). The biochemical properties of the purified CphA49 were determined. The optimum pH and temperature of the recombinant CphA49 were 9.0 and 40 °C, respectively. The enzyme was stable at temperatures below 40 °C. The recombinant CphA49 exhibited strict primer dependency and broad substrate specificities. Cyanophycin catalyzed by CphA49 exhibited homogenous molecular mass. The amino acid composition of cyanophycin was determined and constitutes arginine, aspartic acid, and lysine.  相似文献   

6.
The recombinant strain of Ralstonia eutropha H16-PHB4-∆eda (pBBR1MCS-2::cphA 6308/eda H16) presenting a 2-keto-3-desoxy-phosphogluconate (KDPG) aldolase (eda) gene-dependent catabolic addiction system for plasmid maintenance when using gluconate or fructose as sole carbon source was used in this study. The effects of the initial pH, the nitrogen-to-carbon ratio, the inorganic components of medium, the oxygen supply, and the different carbon and nitrogen sources on the cell dry matter (CDM) and the cyanophycin granule polypeptide (CGP) content of the cells were studied in a mineral salts medium (MSM) without any additional amino acids or CGP precursor substrates. The experiments were designed to systematically find out the optimal conditions for growth of cells to high densities and for high CGP contents of the cells. Maximum contents of water-insoluble CGP and water-soluble CGP, contributing to 47.5% and 5.8% (w/w) of CDM, respectively, were obtained at the 30-L scale cultivation when cells were cultivated in MSM medium containing sufficient supplements of fructose, NH3, K2SO4, MgSO4⋅7H2O, Fe(Ш)NH4-citrate, CaCl2⋅2H2O, and trace elements (SL6). The molecular masses of water-insoluble and water-soluble CGP ranged from 25 to 31 kDa and from 15 to 21 kDa, respectively. High cell densities of up to 82.8 g CDM/L containing up to 37.8% (w/w) water-insoluble CGP at the 30-L scale cultivation were also obtained. This is by far the best combination of high cell density and high cellular CGP contents ever reported, and it showed that efficient production of CGP at the industrial scale in white biotechnology could be achieved.  相似文献   

7.
The effects of the inorganic medium components, the initial pH, the incubation temperature, the oxygen supply, the carbon-to-nitrogen ratio, and chloramphenicol on the synthesis of cyanophycin (CGP) by Acinetobacter calcoaceticus strain ADP1 were studied in a mineral salts medium containing sodium glutamate and ammonium sulfate as carbon and nitrogen sources, respectively. Variation of all these factors resulted in maximum CGP contents of only about 3.5% (wt/wt) of the cell dry matter (CDM), and phosphate depletion triggered CGP accumulation most substantially. However, addition of arginine to the medium as the sole carbon source for growth promoted CGP accumulation most strikingly. This effect was systematically studied, and an optimized phosphate-limited medium containing 75 mM arginine and 10 mM ammonium sulfate yielded a CGP content of 41.4% (wt/wt) of the CDM at 30°C. The CGP content of the cells was further increased to 46.0% (wt/wt) of the CDM by adding 2.5 μg of chloramphenicol per ml of medium in the accumulation phase. These contents are by far the highest CGP contents of bacterial cells ever reported. CGP was easily isolated from the cells by using an acid extraction method, and this CGP contained about equimolar amounts of aspartic acid and arginine and no detectable lysine; the molecular masses ranged from 21 to 29 kDa, and the average molecular mass was about 25 kDa. Transmission electron micrographs of thin sections of cells revealed large CGP granules that frequently had an irregular shape with protuberances at the surface and often severely deformed the cells. A cphI::ΩKm mutant of strain ADP1 with a disrupted putative cyanophycinase gene accumulated significantly less CGP than the wild type accumulated, although the cells expressed cyanophycin synthetase at about the same high level. It is possible that the intact CphI protein is involved in the release of CGP primer molecules from initially synthesized CGP. The resulting lower concentration of primer molecules could explain the observed low rate of accumulation at similar specific activities.  相似文献   

8.
Cyanophycin, a polyamide of cyanobacterial or noncyanobacterial origin consisting of aspartate, arginine, and lysine, was synthesized in different recombinant strains of Escherichia coli expressing cphA from Synechocystis sp. strain PCC 6308 or PCC 6803, Anabaena sp. strain PCC 7120, or Acinetobacter calcoaceticus ADP1. The molar aspartate/arginine/lysine ratio of the water-soluble form isolated from a recombinant strain expressing CphA6308 was 1:0.5:0.5, with a lysine content higher than any ever described before. The water-insoluble form consisted instead of mainly aspartate and arginine residues and had a lower proportion of lysine, amounting to a maximum of only 5 mol%. It could be confirmed that the synthesis of soluble cyanobacterial granule polypeptide (CGP) is independent of the origin of cphA. Soluble CGP isolated from all recombinant strains contained a least 17 mol% lysine. The total CGP portion of cell dry matter synthesized by CphA6308 from recombinant E. coli was about 30% (wt/wt), including 23% (wt/wt) soluble CGP, by using terrific broth complex medium for cultivation at 30°C for 72 h. Enhanced production of soluble CGP instead of its insoluble form is interesting for further application and makes recombinant E. coli more attractive as a suitable source for the production of polyaspartic acid or dipeptides. In addition, a new low-cost, time-saving, effective, and common isolation procedure for mainly soluble CGP, suitable for large-scale application, was established in this study.  相似文献   

9.
In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA–C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising — amongst others — the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16?pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3′-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating other CoA-transferase(s) or CoA-synthetase(s), thereby compensating for the lacking Pct. The ability of R. eutropha H16 to substitute absent enzymes by isoenzymes has been already shown in different other studies in the past.  相似文献   

10.
Ralstonia eutropha H16 is a well-studied bacterium with respect to biosynthesis of polyhydroxyalkanoates (PHAs), which has attracted attentions as biodegradable bio-based plastics. However, this strain shows quite poor growth on glycerol of which bulk supply has been increasing as a major by-product of biodiesel industries. This study examined enhancement of glycerol assimilation ability of R. eutropha H16 by introduction of the genes of aquaglyceroporin (glpF) and glycerol kinase (glpK) from Escherichia coli. Although introduction of glpFK Ec into the strain H16 using a multi-copy vector was not successful, a recombinant strain possessing glpFK Ec within the chromosome showed much faster growth on glycerol than H16. Further analyses clarified that weak expression of glpK Ec alone allowed to establish efficient glycerol assimilation pathway, indicating that the poor growth of H16 on glycerol was caused by insufficient kination activity to glycerol, as well as this strain had a potential ability for uptake of extracellular glycerol. The engineered strains expressing glpFK Ec or glpK Ec produced large amounts of poly[(R)-3-hydroxybutyrate] [P(3HB)] from glycerol with much higher productivity than H16. Unlike other glycerol-utilizable wild strains of R. eutropha, the H16-derived engineered strains accumulated P(3HB) with no significant decrease in molecular weights on glycerol, and the polydispersity index of the glycerol-based P(3HB) synthesized by the strains expressing glpFK Ec was lower than those by the parent strains. The present study demonstrated possibility of R. eutropha H16-based platform for production of useful compounds from inexpensive glycerol.  相似文献   

11.
12.
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg2+, Ca2+, and Mn2+ were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.  相似文献   

13.
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes.  相似文献   

14.
15.
Two strains of the methylotrophic yeast Pichia pastoris were used to establish cyanophycin (multi-l-arginyl-poly-l-aspartic acid [CGP]) synthesis and to explore the applicability of this industrially widely used microorganism for the production of this polyamide. Therefore, the CGP synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA6308) was expressed under the control of the alcohol oxidase 1 promoter, yielding CGP contents of up to 10.4% (wt/wt), with the main fraction consisting of the soluble form of the polymer. To increase the polymer contents and to obtain further insights into the structural or catalytic properties of the enzyme, site-directed mutagenesis was applied to cphA6308 and the mutated gene products were analyzed after expression in P. pastoris and Escherichia coli, respectively. CphA6308Δ1, which was truncated by one amino acid at the C terminus; point mutated CphA6308C595S; and the combined double-mutant CphA6308Δ1C595S protein were purified. They exhibited up to 2.5-fold higher enzyme activities of 4.95 U/mg, 3.20 U/mg, and 4.17 U/mg, respectively, than wild-type CphA6308 (2.01 U/mg). On the other hand, CphA proteins truncated by two (CphA6308Δ2) or three (CphA6308Δ3) amino acids at the C terminus showed similar or reduced CphA enzyme activity in comparison to CphA6308. In flask experiments, a maximum of 14.3% (wt/wt) CGP was detected after the expression of CphA6308Δ1 in P. pastoris. For stabilization of the expression plasmid, the his4 gene from Saccharomyces cerevisiae was cloned into the expression vector used and the constructs were transferred to histidine auxotrophic P. pastoris strain GS115. Parallel fermentations at a one-to-one scale revealed 26°C and 6.0 as the optimal temperature and pH, respectively, for CGP synthesis. After optimization of fermentation parameters, medium composition, and the length of the cultivation period, CGP contents could be increased from 3.2 to 13.0% (wt/wt) in cells of P. pastoris GS115 expressing CphA6308 and up to even 23.3% (wt/wt) in cells of P. pastoris GS115 expressing CphA6308Δ1.Since the first isolation of a methylotrophic yeast, Kloeckera sp. strain 2201, in 1969 (43), the two methylotrophic yeasts Pichia pastoris and Hansenula polymorpha have become the most popular methylotrophs in industry and academia (9, 23, 24). The main benefits of these organisms for the production of recombinant proteins are their growth to cell densities as high as 130 g cell dry matter per liter (50, 57) and the availability of strong and tightly regulated promoters that result in a high product yield (13). Viral hepatitis B surface antigen, S. cerevisiae mating factor α, and S. cerevisiae invertase are only a few examples of compounds produced by recombinant P. pastoris (reviewed in reference 9).A variety of strains were optimized for the expression of recombinant proteins (9). Protease-deficient strains such as strain KM71(H) were generated to circumvent the proteolytic degradation of recombinant proteins (17). Three different phenotypes exist that differ in the ability to utilize methanol (reviewed in reference 37). (i) Mut+ strains grow on methanol as the sole carbon and energy source at the wild-type rate. (ii) Muts strains possess a disrupted alcohol oxidase 1 (AOX1) gene and therefore rely on the weaker AOX2 gene, leading to decreased methanol utilization rates in comparison to those exhibited by Mut+ strains. (iii) Mut strains are not able to utilize methanol as a carbon and energy source; consequently, such strains use the compound as an inducer only and are dependent on the concomitant addition of carbon sources that do not repress the AOX1 promoter (30, 31). Depending on the required product, any of these phenotypes can be optimal (37). The AOX1 promoter is totally repressed during growth on, e.g., glycerol, whereas it is strongly expressed after methanol is supplied (11). Therefore, P. pastoris fermentations are divided into two phases. (i) During growth on glycerol, high cell densities are reached; (ii) subsequent growth on methanol leads to induction of heterologous protein synthesis, resulting in a high product yield (14). Besides glycerol, several other carbon sources, such as, e.g., glucose, acetate, ethanol, or sorbitol, were used for the production of foreign proteins (30, 31). Several fermentation strategies that allow optimal cell and product yields have been established (8, 25, 28).Besides the AOX1 promoter, several other suitable promoters are available (10), e.g., the copper-inducible CUP1 promoter from S. cerevisiae (33, 38), the inducible ICL1 promoter from the isocitrate lyase gene (8), or the constitutive GAP promoter from glyceraldehydes-3-phosphate dehydrogenase (56).Synthesis of cyanophycin (multi-l-arginyl-poly-l-aspartic acid [CGP]) was only recently established in the yeast S. cerevisiae. Recombinant strains harboring cphA from Synechocystis sp. strain PCC 6308 but otherwise with a wild-type background accumulated CGP up to 6.9% (wt/wt) (52), whereas recombinant strains with a mutation in arginine metabolism accumulated CGP even up to 15.3% (wt/wt) of the cell dry mass (CDM) (54). All of the strains synthesized the polymer in soluble and insoluble forms, which was also observed in transgenic plants (29, 42); the soluble type of CGP was first observed in Escherichia coli expressing the cphA gene from Desulfitobacterium hafniense (59). Several cyanobacterial and heterotrophic CGP synthetase genes were expressed heterologously in the past (16, 26, 29, 52, 59). To unravel structurally or catalytically relevant residues of the enzyme, a few site-directed mutations were generated in cyanobacterial cphA genes (26, 27, 35, 53). In addition, several variations in the amino acid composition of the polymer were recently obtained; while cyanobacterial CGP or CGP synthesized by specific CphA proteins exhibiting a narrow substrate range contained aspartate and arginine only (18, 51); lysine was observed as a component replacing arginine at up to 18 mol% in recombinant strains of E. coli and S. cerevisiae harboring CphA with a broader substrate range (34, 54). Moreover, citrulline and ornithine were also detected as constituents replacing arginine in mutants of S. cerevisiae expressing CphA from Synechocystis sp. strain PCC 6308 (54). The soluble CGP contained up to 20 mol% citrulline or up to 8 mol% ornithine instead of arginine. The latter enzyme also revealed a wide substrate range in vitro comprising agmatine and canavanine besides arginine, lysine, citrulline, and ornithine (2, 58).A multitude of technical or pharmaceutical applications are known for degradation products of CGP (44, 48, 49). Dipeptides obtained after α cleavage of the polymer by cyanophycinases are employed as high-value pharmaceuticals (45, 46). Through β cleavage of the polymer, polyaspartic acid can be obtained, which serves as a biodegradable alternative to the persistent polyacrylic acid (9). Finally, research on the synthesis of bulk chemicals such as urea or acrylonitrile from CGP has become of special interest (40, 48, 49).In this study, the methylotrophic yeast P. pastoris was, for the first time, employed for synthesis of the polyamide CGP to analyze if this organism provides a perspective for the production of the polymer. For further optimization of polymer yields, mutated CphA proteins were generated by site-directed mutagenesis and characterized and optimal growth parameters were determined in parallel fermentations.  相似文献   

16.
Eleven bacteria capable of utilizing cyanophycin (cyanophycin granule polypeptide (CGP)) as a carbon source for growth were isolated. One isolate was taxonomically affiliated as Pseudomonas anguilliseptica strain BI, and the extracellular cyanophycinase (CphE) was studied because utilization of cyanophycin as a carbon source and extracellular cyanophycinases were hitherto not described. CphE was detected in supernatants of CGP cultures and purified from a corresponding culture of strain BI employing chromatography on the anion exchange matrix Q-Sepharose and on an arginine-agarose affinity matrix. The mature form of the inducible enzyme consisted of one type of subunit with M(r) = 43,000 and exhibited high specificity for CGP, whereas proteins and synthetic polyaspartic acid were not hydrolyzed or were only marginally hydrolyzed. Degradation products of the enzyme reaction were identified as aspartic acid-arginine dipeptides (beta-Asp-Arg) by high performance liquid chromatography and electrospray ionization mass spectrometry. The corresponding gene (cphE, 1254 base pairs) was identified in subclones of a cosmid gene library of strain BI by heterologous active expression in Escherichia coli, and its nucleotide sequence was determined. The enzyme exhibited only 27-28% amino acid sequence identity to intracellular cyanophycinases occurring in cyanobacteria. Analysis of the amino acid sequence of cphE revealed a putative catalytic triad consisting of the motif GXSXG plus a histidine and most probably a glutamate residue. In addition, the strong inhibition of the enzyme by Pefabloc((R)) and phenylmethylsulfonyl fluoride indicated that the catalytic mechanism of CphE is related to that of serine type proteases. Quantitative analysis on the release of beta-Asp-Arg dipeptides from C-terminal labeled CGP gave evidence for an exo-degradation mechanism.  相似文献   

17.
Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs.  相似文献   

18.
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.  相似文献   

19.
Cyanophycin is a natural source of polypetide consisting of aspartic acid as a backbone and arginine as its side chain. After the removal of arginine, the remaining poly-aspartate can be served in numerous industrial and biomedical applications. The synthesis of cyanophycin is catalyzed by cyanophycin synthetase. In this study, we used lactic acid bacteria to produce cyanophycin by nisin-controlled gene expression system (NICE). The cyanophycin synthetase gene cphA of Synechocystis sp. strain PCC6803 was cloned to the vector pNZ8149 followed by transformation into Lactococcus lactis subsp. cremoris NZ3900. The effects of nisin concentrations and the amounts of supplemented aspartic acid and arginine were examined for the production of cyanophycin. Alterations of the terminus of cphA gene were also conducted in an attempt to increase the yield of cyanophycin. An optimal cyanophycin production was noted under a culture condition of log phase induced at 250 ng/mL nisin in M17L medium supplemented with 20 mM arginine and 10 mM aspartic acid. An insertion of glycine residue at the C terminus of cyanophycin synthetase resulted in a yield of 20% of dry cell weight, a 10-fold increase when compared with the wild type. The results showed that recombinant lactic acid bacteria, a GRAS system, could provide an alternative approach of producing cyanophycin suitable for agricultural and biomedical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号