首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singh NS  Singh DK 《Biodegradation》2011,22(5):845-857
Endosulfan is one of the most widely used wide spectrum cyclodiene organochlorine insecticide. In environment, endosulfan can undergo either oxidation or hydrolysis reaction to form endosulfan sulfate and endosulfan diol respectively. Endosulfan sulfate is as toxic and as persistent as its parent isomers. In the present study, endosulfan degrading bacteria were isolated from soil through selective enrichment technique using sulfur free medium with endosulfan as sole sulfur source. Out of the 8 isolated bacterial strains, strain C8B was found to be the most efficient endosulfan degrader, degrading 94.12% α-endosulfan and 84.52% β-endosulfan. The bacterial strain was identified as Achromobacter xylosoxidans strain C8B on the basis of 16S rDNA sequence similarity. Achromobacter xylosoxidans strain C8B was also found to degrade 80.10% endosulfan sulfate using it as sulfur source. No known metabolites were found to be formed in the culture media during the entire course of degradation. Besides, the bacterial strain was found to degrade all the known endosulfan metabolites. There was marked increase in the quantity of released CO2 from the culture media with endosulfan as sulfur source as compared to MgSO4 suggesting that the bacterial strain, Achromobacter xylosoxidans strain C8B probably degraded endosulfan completely through the formation of endosulfan ether.  相似文献   

2.
Biodegradation of endosulfan, a chlorinated cyclodiene insecticide, is generally accompanied by production of the more toxic and more persistent metabolite, endosulfan sulfate. Since our reported endosulfan degrader, Klebsiella pneumoniae KE-1, failed to degrade endosulfan sulfate, we tried to isolate an endosulfan sulfate degrader from endosulfan-polluted soils. Through repetitive enrichment and successive subculture using mineral salt medium containing endosulfan or endosulfan sulfate as the sole source of carbon and energy, we isolated a bacterium capable of degrading endosulfan sulfate as well as endosulfan. The bacterium KE-8 was identified as Klebsiella oxytoca from the results of 16S rDNA sequence analysis. In biodegradation assays with KE-8 using mineral salt medium containing endosulfan (150 mg l–1) or endosulfan sulfate (173 mg l–1), the biomass was rapidly increased to an optical density at 550 nm of 1.9 in 4 days and the degradation constants for - and -endosulfan, and endosulfan sulfate were 0.3084, 0.2983 and 0.2465 day–1, respectively. Analysis of the metabolites further suggested that K. oxytoca KE-8 has high potential as a biocatalyst for bioremediation of endosulfan and/or endosulfan sulfate.  相似文献   

3.
The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants.  相似文献   

4.
Endosulfan is a chlorinated pesticide widely used in India for the protection of cotton, tea, sugarcane and vegetables. The persistence of endosulfan in environment and toxic effects on biota necessitate its removal. The role of soil fungi in recycling organic matter prompted us to attempt biodegradation of endosulfan using fungi. This study aims at enrichment, isolation and screening of fungi capable of metabolizing endosulfan. In all, 16 fungal isolates were obtained by enrichment of soil samples that had seems exposed to endosulfan before. Isolates were screened by a gradient plate assay, and results were confirmed by broth assay. On the basis of tolerance to endosulfan, an isolate, identified as Aspergillus niger was selected for further studies. The culture could tolerate 400 mg ml−1 of technical grade endosulfan. Complete disappearance of endosulfan was seen on 12 days of incubation. Evolution of carbon dioxide during endosulfan metabolism has indicated the complete mineralization of endosulfan. Change in pH of culture broth to acidic range supported the biological transformation. Thin layer chromography (TLC) analyses revealed the formation of various intermediates of endosulfan metabolism including endosulfan diol, endosulfan sulfate, and an unidentified metabolite. The toxic intermediate, endosulfan sulfate, was also metabolized, further resulting in complete mineralization of endosulfan. Direct desulfurization of endosulfan sulfate or a novel pathway could be the mechanism of endosulfan and endosulfan sulfate degradation in Aspergillus niger. The fungal strain isolated by us could prove valuable for bioremediation of endosulfan contaminated soils and waters.  相似文献   

5.
The metabolizing potential of a bacterial strain Rhodococcus MTCC 6716, isolated from the gut of an Indian earthworm (Metaphire posthuma) was studied for endosulfan bioremediation. In the present work, the optimum conditions for the maximum growth, kinetic of endosulfan degradation, regression equation, half life and correlation coefficient were studied. Endosulfan induced alterations in the expression of mRNA and protein of specific endosulfan metabolizing marker gene (Esd) was studied. Maximum growth of bacteria was observed at pH 7.0, 30°C and 0.085 M sodium chloride concentration in a liquid culture medium. Endosulfan was degraded by Rhodococcus strain up to 97.23% within 15 days without producing toxic metabolite and with strong correlation coefficient (-0.728) and half life 5.99 days. Endosulfan degradation was mediated through gene(s) present in genomic DNA. Expression of marker gene was found endosulfan concentration dependent. The results suggest that this novel strain (Rhodococcus) may be utilized for bioremediation of endosulfan.  相似文献   

6.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after 12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites. ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots.  相似文献   

7.
Endosulfan, a chlorinated hydrocarbon insecticide of cyclodiene subgroup acts as a contact poison in a wide variety of organisms. In the present study, the effect of endosulfan on the growth, alpha amylase activity and plasmid amplification was investigated in Bacillus subtilis system. The bacteria were grown in medium, incubated with different concentrations (32, 48, 64 and 80 microg/mL) of endosulfan. The bacterial growth was gradually seen after 1st day at up to 48 microg/L endosulfan. The 48 microg/L endosulfan inhibited approximately 50% of the bacterial growth. No growth was observed at and after 64 microg/L endosulfan, for all days (1-5). Also, no alpha amylase activity was found in the supernatant of the culture medium containing 64 and 80 microg/L endosulfan, whereas slight activity was observed with 32 and 48 microg/L endosulfan concentration. The amount of plasmid increased up to 50% in the presence of 32 microg/L endosulfan. Endosulfan had no effect on the alpha amylase activity in vitro.  相似文献   

8.
Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio) embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L?1, whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L?1 of endosulfan. Comparative gene expression using real-time quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.  相似文献   

9.
Studies on the genotoxicity of endosulfan in bacterial systems   总被引:15,自引:0,他引:15  
Endosulfan, an organochlorine pesticide, was subjected to the differential sensitivity assay in repair-deficient and repair-proficient strains of Escherichia coli K12, prophage lambda induction assay in WP2s (lambda) and mutation induction in E. coli K12. The induction of umu gene expression with endosulfan was studied also in Salmonella typhimurium TA1535/pSK1002 cells. The differential sensitivity assay revealed that the recA 13 strain was the most sensitive. Endosulfan induced prophage lambda in E. coli and umu gene expression in S. typhimurium cells; however, the extent of the effects were low. Endosulfan also induced a dose-dependent increase in forward mutations in E. coli K12 cells from ampicillin sensitivity to ampicillin resistance. Our studies indicate the genotoxic potential of endosulfan and the role of the recA gene in the repair of endosulfan-induced DNA damage.  相似文献   

10.
11.
Endosulfan, a cyclic sulphurous acid ester commonly used as a broad spectrum insecticide, suppressed the elongation of barley coleoptiles. Indoleacetic acid at optimum concentration overcame the inhibition of growth of coleoptiles treated with 10 ppm endosulfan. However, perfusion of the coleoptile sections with endosulfan and subsequent treatment with indoleacetic acid could not stimulate cell elongation to the extent observed in the control  相似文献   

12.
Endosulfan is a potent organochlorinated pesticide that is known to induce side effects in aquatic organisms, including Oreochromis niloticus (Nile tilapia). It has been previously shown that endosulfan induces oxidative stress and non-specific activation of splenic macrophages and exacerbated serum interleukin-2 synthesis in Nile tilapia. Endosulfan may promote proliferation of T cells through MAP kinase (MAPK) activated signal transductions. The ERK family of MAPKs includes ERK1 and ERK2. Phosphorylated ERK1/2 (pERK1/2) molecules are involved in many aspects of cellular survival, and are important for apoptosis or oxidative stress-induced senescence. In order to study the mechanisms by which endosulfan affects fish health, the present study was aimed at evaluating the in vitro effects of this insecticide on proliferation, the ERK1/2 pathway, apoptosis and cell senescence in splenocytes from Nile tilapia. Lymphoproliferation was evaluated by colorimetric method using the WST-1 assay. Flow cytometry was used to assess pERK1/2, apoptosis and senescence, using Annexin V-FITC and β-galactosidase respectively. Experimental data showed that exposure to 7 μg mL(-1) of endosulfan per se increased cellular proliferation, but decreased the lymphoproliferative response to mitogenic stimulus with PMA + ionomycin. Splenocytes exposed to endosulfan for 15-180 min showed significantly higher levels of pERK1/2 than the non-exposed control. Endosulfan mediated a decrease in etoposide-induced apoptosis and provoked cell senescence. In conclusion, exposure of immune cells to a low concentration of endosulfan deregulates their function and may facilitate the development of multiple diseases.  相似文献   

13.
1. Endosulfan insecticide is a polychlorinated compound used for controlling a variety of insects; it is practically water-insoluble, but readily adheres to clay particles and persists in soil and water for several years. Its mode of action involves repetitive nerve-discharges positively correlated to increase in temperature. This compound is extremely toxic to most fish and can cause massive mortalities. In fish, it causes marked changes in Na and K concentrations, decrease in blood Ca2+ and Mg levels and inhibits Na, K and Mg-dependent ATPase (in brain).2. Bioaccumulation of endosulfan is reported for marine animals; however, freshwater animals (e.g. crayfish) accumulate it to some extent, but they lose the compound rapidly during depuration. Endosulfan is generally less toxic to aquatic invertebrates than fish. However, it causes decreases in adenylate energy charge, oxygen consumption, hemolymph amino acids, succinate dehydrogenase, heart-beat (mussel) and altered osmoregulation.3. Generally, mammals are less susceptible to endosulfan's toxicity than aquatic animals. The majority of studies conducted on laboratory mammals can be summarized, (a) Neurotoxicity: male rats are more sensitive than females to endosulfan, which decreases brain and plasma acetyleholinesterase activity. Endosulfan I (a metabolite) causes a significant change in norepinephrine, 5-HT and GABA. (b) Renal toxicity: inhibition of MFOs activity was noticed in rats; other effects included changes in proximal convoluted tubules and necrosis of the tubular epithelium, (c) Hepatotoxicity: chemically-induced aminopyrine N-demethylase and aniline hydrolase were found in rat liver, and reduction in the glycogen level occurred, (d) Hematologic toxicity: endosulfan exposure resulted in a significant decrease in the erythrocyte glutathione reductase, hemoglobin amount, RBC number and mean corpuscular volume.4. Respiratory toxicity: involved dyspnea, acute emphysema, cyanosis and hemorrhages in the interalveolar partitions of rat's lungs.5. Biochemical: in rats, endosulfan caused increased glucose-6-phosphate dehydrogenase activity, blood glucose level, phospholipid contents of the microsomal and surfactant system, and profoundly induced the activity of alcohol dehydrogenase and cytosolic glutathione S-transferases. It also decreased significantly Na+, K+ and Mg2+ ATPases, plasma calcium level and alkaline phosphatase in the intestinal epithelium.6. Immunologic toxicity: rat serum antibody titer to tetanus toxin, IgG, IgM and gammaglobulins were significantly reduced.7. Reproductive toxicity: degenerative changes in the seminiferous epithelium, induction of the rate-limiting enzyme in testosterone production (3β-hydroxysteroid transferase and 17β-hydroxysteroid transferase), histological changes in reproductive organs, testicular atrophy and the occurrence of ovarian cysts were noticed in rat. Reduction in the weight of secondary sex organ was also observed.8. Developmental, teratogenic and genotoxicity: this insecticide caused a significant increase in the fetal résorption of rats. Skeletal abnormalities included underweight fetuses, small 4th and 5th unossified sternabrae. No fetotoxic or teratogenic activity was found in rabbits; however, in chickens, egg-hatchability and sterility occurred due to antimitotic activity. Endosulfan caused significant chromosomal aberrations in mouse and hamster bone-marrow cells and damage to spermatozoa cells. In Drosophila, sex-linked recessive lethals were noticed. In mice, dominant lethal mutations occurred; increase in abnormal sperm and decrease in count occurred.9. Carcinogenic toxicity: not reported to be carcinogenic in B6C3F mice or humans by any route of exposure.10. Toxicity to humans: endosulfan exposure has exhibited epileptic effects, hyperactivity, irritability, tremors, convulsions and paralysis in humans. A suicidal attempt by a 20-year old male who ingested 30% endosulfan caused hypoxia, followed by recurrent aspiration pneumonia, episodes of tachycardiogenic shock which was preceded by tachycardia and hypertension.  相似文献   

14.
For bioremediation of toxic endosulfan, endosulfan degradation bacteria, which do not form toxic endosulfan sulfate, were isolated from various soil samples using endosulfan as sole carbon and energy source. Among the 40 isolated bacteria, strain KE-1, which was identified as Klebsiella pneumoniae by physiological and 16S rDNA sequence analysis, showed superior endosulfan degradation activity. Analysis of culture pH, growth, free sulfate and endosulfan and its metabolites demonstrated that KE-1 biologically degrades 8.72 microg endosulfan ml(-1) day(-1) when incubated with 93.9 microg ml(-1) endosulfan for 10 days without formation of toxic endosulfan sulfate. Our results suggest that K. pneumoniae KE-1 degraded endosulfan by a non-oxidative pathway and that strain KE-1 has potential as a biocatalyst for endosulfan bioremediation.  相似文献   

15.
Chronic endosulfan exposure in rats led to considerable increase in the activities of drug metabolizing enzymes, whereas it had inhibitory effect on the activities of enzymes involved in the androgen biotransformation. Endosulfan also produced a dose- and duration-dependent increase in microsomal lipid peroxidation. The alterations produced after shorter duration showed much variation with respect to the dose levels and exposure period of endosulfan studied. The above biochemical changes were reversed after endosulfan withdrawal.  相似文献   

16.
In this study, the effect of the endosulfan on mice kidney was investigated at ultrastructural level. Moreover, biochemical analyses (G6PD, CAT, SOD, GSH and MDA) were determined in supernatant of kidney tissue. Endosulfan (13mg/kg/day body weight) was administered orally to mices via intragastric-during 10 days. The presence of mitochondrial degeneration in cytoplasm of proximal convoluted tubule cells were a striking feature. Furthermore, there was lipofuscin granules and membranous structures in some of proximal convoluted tubule cells. In some glomeruli, ultrastructural changes such as fusion in pedicels and focal thickening at glomerular basal membrane were seen. There were cytoplasmic bulges in some distal convoluted tubule cells. The biochemical results of the experimental group were significant when compared to the control. The effect of the endosulfan was mainly on the proximal convoluted tubule cells. Morever, the other parts of the nephron were effected. Thus, this degeneration in kidney may be thought that oxidative stress may play a role to the mediator in changing configuration of cell membrane and seem to account for the morphologic alteration of kidney.  相似文献   

17.
A bacterial consortium consists of three bacterial isolates, which rapidly mineralizes endosulfan, was enriched from an endosulfan-processing industrial surface soil. Batch experiments were conducted using bacterial consortium and its pure isolates for their potential degradation of endosulfan and its metabolites, i.e., endosulfan sulfate, endosulfan ether, and endosulfan lactone, in anaerobic condition. Endosulfan degradation was promising with bacterial consortium and pure isolates. Staphylococcus sp. preferably utilized beta endosulfan whereas other two Bacillus strains utilized more alpha endosulfan. The addition of supplementary carbon, i.e., dextrose, stimulated the endosulfan degradation efficiency in both the cases. Degradation of endosulfan ether and endosulfan lactone was promising with Bacillus circulans I and II whereas no endosulfan sulfate was degraded by any of these strains. From the present investigation, it was postulated that endosulfan was mineralized via hydrolysis pathway with the formation of carbenium ions and/or ethylcarboxylates, which later converted into simple hydrocarbons.  相似文献   

18.
Recent studies have shown that cultures of white rot fungi not favoring the production of lignin and manganese peroxidases are effective in degrading certain xenobiotics. In this study we have used endosulfan as a model xenobiotic to assess the enzymatic mechanisms of pesticide metabolism under ligninolytic (nutrient-deficient) and nonligninolytic (nutrient-rich) culture conditions. Rapid metabolism of this chlorinated pesticide occurred under each nutrient condition tested. However, the extent of degradation and the nature of the metabolic products differed for nutrient-deficient and nutrient-rich media. The pathways for endosulfan metabolism were characterized by analysis of the fungal metabolites produced. The major endosulfan metabolites were identified by gas chromatography-electron capture detection and gas chromatography-mass spectrometry as endosulfan sulfate, endosulfan diol, endosulfan hydroxyether, and a unknown metabolite tentatively identified as endosulfan dialdehyde. The nature of the metabolites formed indicates that this organism utilizes both oxidative and hydrolytic pathways for metabolism of this pesticide. Piperonyl butoxide, a known cytochrome P-450 inhibitor, significantly inhibited the oxidation of endosulfan to endosulfan sulfate and enhanced hydrolysis of endosulfan to endosulfan diol. We suggest that the metabolism of endosulfan is mediated by two divergent pathways, one hydrolytic and the other oxidative. Judging by the inactivity of extracellular fluid and partially purified lignin peroxidase in metabolizing endosulfan, we conclude that metabolism of this compound does not involve the action of extracellular peroxidases.  相似文献   

19.
Aim: To determine optimal environmental conditions for achieving biodegradation of α‐ and β‐endosulfan in soil slurries following inoculation with an endosulfan degrading strain of Pseudomonas aeruginosa. Methods and Results: Parameters that were investigated included soil texture, soil slurry: water ratios, initial inoculum size, pH, incubation temperature, aeration, and the use of exogenous sources of organic and amino acids. The results showed that endosulfan degradation was most effectively achieved at an initial inoculum size of 600 μl (OD = 0·86), incubation temperature of 30°C, in aerated slurries at pH 8, in loam soil. Under these conditions, the bacterium removed more than 85% of spiked α‐ and β‐endosulfan (100 mg l?1) after 16 days. Abiotic degradation in noninoculated control medium within same incubation period was about 16%. Biodegradation of endosulfan varied in different textured soils, being more rapid in course textured soil than in fine textured soil. Increasing the soil contents in the slurry above 15% resulted in less biodegradation of endosulfan. Exogenous application of organic acids (citric acid and acetic acid) and amino acids (l ‐methionine and l ‐cystein) had stimulatory and inhibitory effects, respectively, on biodegradation of endosulfan. Conclusion: The results of this study demonstrated that biodegradation of endosulfan by Ps. aeruginosa in soil sediments enhanced significantly under optimized environmental conditions. Significance and Impact of the Study: Endosulfan is a commonly used pesticide that can contaminate soil, wetlands and groundwater. Our study demonstrates that bioaugmentation of contaminated soils with an endosulfan degrading bacterium under optimized conditions provides an effective bioremediation strategy.  相似文献   

20.
Summary Endosulfan is an insecticide used on many vegetable crops. In mushroom cultivation, vegetable materials used as a growth substrate may contain residues of endosulfan that may accumulate in the final mushroom biomass. After preparing the substrate, it is subjected to pasteurization and/or composting and then inoculated with the desired fungus. The purpose of this research was to determine the rate and extent of endosulfan reduction from a grass substrate that was either composted or sterilized by autoclaving. In addition, the rate and extent of removal of endosulfan from substrate colonized with Pleurotus pulmonarius was determined. The degradation of 65 mg/kg endosulfan was analyzed on both, the substrate preparation and the culture of P. pulmonarius on the grass Digitaria decumbens. During composting in presence of Ca(OH)2 for 120 h, the concentrations of α and β endosulfan were reduced by 61.4 and 49.5% respectively, significantly higher compared with the control (without Ca(OH)2,) in which the reduction was 38.5%. After sterilization the concentration of α and β endosulfan was reduced by 84.8 and 87.5% respectively. After the colonization of substrate by P. pulmonarius (15 days after spawning) α and β endosulfan were reduced by 96% and at the end of cultivation (35 days after spawning) were reduced by 99%. When carpophores were analyzed, residues of α and β endosulfan were observed between 0.019–0.084 mg/kg. The results showed that α and β endosulfan were partially removed during the preparation of substrate and entirely eliminated during fungal colonization on the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号