共查询到20条相似文献,搜索用时 0 毫秒
1.
Kaplan O Vejvoda V Plíhal O Pompach P Kavan D Bojarová P Bezouska K Macková M Cantarella M Jirků V Kren V Martínková L 《Applied microbiology and biotechnology》2006,73(3):567-575
Aspergillus niger K10 cultivated on 2-cyanopyridine produced high levels of an intracellular nitrilase, which was partially purified (18.6-fold) with a 24% yield. The N-terminal amino acid sequence of the enzyme was highly homologous with that of a putative nitrilase from Aspergillus fumigatus Af293. The enzyme was copurified with two proteins, the N-terminal amino acid sequences of which revealed high homology with those of hsp60 and an ubiquitin-conjugating enzyme. The nitrilase exhibited maximum activity (91.6 U mg-1) at 45°C and pH 8.0. Its preferred substrates, in the descending order, were 4-cyanopyridine, benzonitrile, 1,4-dicyanobenzene, thiophen-2-acetonitrile, 3-chlorobenzonitrile, 3-cyanopyridine, and 4-chlorobenzonitrile. Formation of amides as by-products was most intensive, in the descending order, for 2-cyanopyridine, 4-chlorobenzonitrile, 4-cyanopyridine, and 1,4-dicyanobenzene. The enzyme stability was markedly improved in the presence of d-sorbitol or xylitol (20% w/v each). p-Hydroxymercuribenzoate and heavy metal ions were the most powerful inhibitors of the enzyme. 相似文献
2.
Invertase produced by a strain of Aspergillus niger showed the following main characteristics: maximum activity at 60°C, pH 5.0; K
m with sucrose as substrate, 0.0625mm; V
max 0.013 mol/min; and free energy 9132 cal/mol. The metal ions and p-chloromercuribenzoate (PCMB) acted as inhibitors respectively. 相似文献
3.
《Journal of Fermentation and Bioengineering》1995,79(2):125-130
An endo-β-1,4-glucanase (EC 3.2.1.4) was purified from a culture filtrate of Aspergillus niger IFO31125 by column chromatography through TSK-gel DEAE-3SW and TSK-gel DEAE-5PW, and by gel filtration through TSK-gel G2000SW by high performance liquid chromatography. The enzyme was estimated to have a molecular weight of about 40 kDa by both gel filtration and SDS-polyacrylamide gel electrophoresis, and appeared to consist of a monomeric protein. It contained 8.9% carbohydrate. The optimal pH for activity was 6.0–7.0, and the stable pH range was 5.0–10.0. The optimum temperature at pH 6.0 was around 70°C. The enzyme was very thermally stable and no loss of original activity was found on incubation at 60°C for 2 h. The enzyme efficiently hydrolyzed carboxymethylcellulose and lichenan, but crystalline forms of cellulose, curdlan, laminarin, cellobiose, p-nitrophenyl-β-d-glucopyranoside and p-nitrophenyl-β-d-cellobioside were barely hydrolyzed. The activity of the enzyme was inhibited by Hg2+ and Cu2+ but was not affected by other inhibitors of thiol enzymes such as p-chloromercuribenzoate and N-ethylmaleimide. N-Bromosuccinimide showed a strong inhibitory effect, suggesting that a tryptophan residue is essential for the activity of the enzyme. The N-terminal amino acid sequence of the enzyme showed considerable homology to those of endo-β-1,4-glucanases from some other microorganisms, including Sclerotinia sclerotiorum and Schizophyllum commune. The enzyme had very strong protease-resistance, and showed no loss of activity when incubated with proteases such as Savinase at 40°C, even for 2 weeks. 相似文献
4.
A beta-glucuronidase from Pectinex Ultra SP-L, a commercial pectolytic enzyme preparation from Aspergillus niger, was purified 170-fold by ion-exchange chromatography and gel filtration. Apparent M(r) of the purified enzyme, estimated by denaturing gel electrophoresis and size-exclusion chromatography, were 68,000 and 71,000, respectively, indicating that the enzyme is a monomeric protein. It released uronic acids not only from p-nitrophenyl beta-glucosiduronic acid (PNP-GlcA) but also from acidic galactooligosaccharides carrying either beta-D-glucosyluronic or 4-O-methyl-beta-D-glucosyluronic residues at the nonreducing termini through beta-(1-->6)-glycosidic linkages. The enzyme exhibited a maximal activity toward these substrates at pH 3.0. A regioisomer, 3-O-beta-glucosyluronic acid-galactose, was unsusceptible to the enzyme. The enzyme did act on a polymer substrate, releasing uronic acid from the carbohydrate portion of a radish arabinogalactan-protein modified by treatment with fungal alpha-L-arabinofuranosidase. The enzyme produced acidic oligosaccharides by transglycosylation, catalyzing the transfer of uronic acid residues of PNP-GlcA and 6-O-beta-glucosyluronic acid-galactose to certain exogenous acceptor sugars such as Gal, N-acetylgalactosamine, Glc, and xylose. 相似文献
5.
Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris 总被引:3,自引:0,他引:3
The inuA1 gene encoding an exoinulinase from Aspergillus niger AF10 was expressed in Pichia pastoris, and the recombinant enzyme activity was 316U/ml in a 5L fermentor, with the inulinase protein accounting for 35% of the total protein of fermentation broth. The hydrolysis rate of inulin can reach 92%, with a 25U/g inulin enzyme addition, and 90% of fructose content after 6h. Glucose can significantly inhibit the enzymatic hydrolysis of inulin. This is the first report of glucose inhibition of inulinase-catalyzed hydrolysis. 相似文献
6.
从黑曲霉发酵液中经硫酸铵分级沉淀,Phenyl-Sepharose疏水柱层析,DEAE-Sepharose 4B阴离子交换柱得到电泳纯的脂肪酶,纯化倍数达10倍,回收率50%.对脂肪酶的性质分析表明:该酶分子质量约为35 kDa,最适温度和最适pH分别为37℃和9.5,50℃以下和pH6.0~11.0之间保持稳定,属于碱性脂肪酶.Mg2+、Ca2+、Cu2+、Zn2+、Co2+、Mn2+对该酶有激活作用,而Al3+、Fe2+、Fe3+对酶有严重抑制作用.变性剂盐酸胍和脲对其未见显著影响,而SDS强烈抑制其酶活.用不同氨基酸修饰剂对酶进行修饰,其中NBS和PMSF强烈抑制该酶活性,NBSF和DTT在低浓度下对酶活影响不大,2,3-丁二酮在高浓度下影响其活性.外加稳定剂如NaCl、PEG、甘油、山梨醇、海藻酸钠,均可不同程度的延长脂肪酶的半衰期.在一定质量比条件下,该酶有良好的抗蛋白酶性质. 相似文献
7.
从黑曲霉发酵液中经硫酸铵分级沉淀,Phenyl-Sepharose疏水柱层析,DEAE-Sepharose 4B阴离子交换柱得到电泳纯的脂肪酶,纯化倍数达10倍,回收率50%。对脂肪酶的性质分析表明:该酶分子质量约为35kDa,最适温度和最适pH分别为37℃和9.5,50℃以下和pH6.0~11.0之间保持稳定,属于碱性脂肪酶。Mg^2+、Ca^2+、Cu^2+、Zn^2+、Co^2+、Mn2^+对该酶有激活作用,而Al^3+、Fe^2+、Fe^3+对酶有严重抑制作用。变性剂盐酸胍和脲对其未见显著影响,而SDS强烈抑制其酶活。用不同氨基酸修饰剂对酶进行修饰,其中NBS和PMSF强烈抑制该酶活性,NBSF和DTT在低浓度下对酶活影响不大,2,3-丁二酮在高浓度下影响其活性。外加稳定剂如NaCl、PEG、甘油、山梨醇、海藻酸钠,均可不同程度的延长脂肪酶的半衰期。在一定质量比条件下,该酶有良好的抗蛋白酶性质。 相似文献
8.
Lara A. Bestwick Line M. Grønning David C. James Atle Bones John T. Rossiter 《Physiologia plantarum》1993,89(4):811-816
In germinating seedlings of Brassica napus glucosinolate levels decrease and are potentially degraded to nitriles by a myrosinase. Little is known about the metabolism of glucosinolate aglycone products and the objective of this work was to investigate nitrilase activity and carry out a purification of the enzyme from seedlings of B. napus . A nitrilase capable of converting phenylpropionitrile to phenylpropionic acid was purified to apparent homogeneity from seedlings of B. napus . The protein has a molecular mass of approximately 420 kDa made up of 38 kDa subunits. The pI of the native protein was found to be 4.6. Under denaturing conditions on an isoelectric focusing (IEF) gel a major and minor protein was observed with pI in the range of 5.4-5.9, suggesting the presence of isoforms. Apart from the potential role of the nitrilase in indole-3-acetic acid (IAA) synthesis a developmental study with seedlings indicates that the increase in activity observed may be linked to the in vivo degradation of glucosinolates. 相似文献
9.
A fungus capable of using carbaryl as the sole source of carbon and energy was isolated from a soil enrichment, and characterized as Aspergillus niger and designated strain PY168. A novel carbaryl hydrolase from cell extract was purified 262-fold to apparent homogeneity with 13.6% overall recovery. It had a monomeric structure with a molecular mass of 50,000 Da and a pI of 4.6, and the enzyme activity was optimal at 45 degrees C and pH 7.5, The activities were strongly inhibited by Hg(2+), Ag+, rho-chloromercuribenzoate, iodoacetic acid, diisofluorophosphate and phenylmethylsulfonyl fluoride but not EDTA and phenanthroline. The purified enzyme hydrolyzed various N-methylcarbamate insecticides. Carbaryl is the preferred substrate. 相似文献
10.
Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142 总被引:9,自引:0,他引:9
Extracellular phytase produced by Aspergillus niger ATCC 9142 was purified to homogeneity by employing an initial ultrafiltration step, followed by chromatography using ion exchange, gel filtration and chromatofocusing steps. The purified enzyme was an 84 kDa, monomeric protein. It possessed a temperature optimum of 65 degrees C, and a pH optimum of 5.0. Km and Vmax values of 100 microM and 7 nmol/s, respectively, were recorded and these values fall well within the range of those previously reported for microbial phytases. Substrate specificity studies indicated that, while the enzyme could hydrolyse a range of non-phytate-based phosphorylated substrates, its preferred substrate was phytate. Phytase activity was moderately stimulated in the presence of Mg2+, Mn2+, Cu2+, Cd2+, Hg2+, Zn2+ and F- ions. Activity was not significantly affected by Fe2- or Fe3- and was moderately inhibited by Ca2+. The enzyme displayed higher thermostability at 80 degrees C than did two commercial phytase products. Initial characterisation of the purified enzyme suggested that it could be a potential candidate for use as an animal feed supplement. 相似文献
11.
An extracellular lipase from Aspergillus niger NCIM 1207 has been purified to homogeneity using ammonium sulfate precipitation followed by phenyl sepharose and Sephacryl-100 gel chromatography. This protocol resulted in 149 fold purification with 54% final recovery. The purified enzyme showed a prominent single band on SDS-PAGE. The purified enzyme is a monomeric protein of 32.2 kDa molecular weight and exhibits optimal activity at 50 degrees C. One interesting feature of this enzyme is its highly acidic pH optimum. The isoelectric point (pI) of lipase was 8.5. The purified lipase appears to be unique since it cleaved triolein at only 3-position releasing 1,2-diolein. Chemical modification studies revealed that His, Ser, Carboxylate and Trp are involved in catalysis. 相似文献
12.
13.
A cellulolytic enzyme was isolated from a commercial cellulase preparation form Aspergillus niger. A yield of about 50mg of enzyme was obtained per 100g of commerial cellulase. The isolated enzyme was homogeneous in the ultracentrifuge at pH 4.0 and 8.0, and in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis but showed one major and two minor bands in disc gel electrophoresis. No carbohydrate was associated with the protein. Amino acid analysis revealed that the enzyme was rich in acidic and aromatic amino acids. Data from the amino acid composition and dodecyl sulphate/polyacrylamide-gel electrophoresis indicated a molecular weight of 26000. The purified enzyme was active towards CM-cellulose, but no activity towards either cellobiose or p-nitrophenyl beta-D-glucoside was detected under the assay conditions used. The pH optimum for the enzyme was pH 3.8-4.0, and it was stable at 25 degrees C over the range pH 1-9; maximum activity (at pH 4.0) was obtained at 45 degrees C. The cellulase was more stable to heat treatment at pH 8.0 than at 4.0. Kinetic studies gave pK values between 4.2 and 5.3 for groups involved in the enzyme-substrate complex. 相似文献
14.
Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023 总被引:1,自引:0,他引:1
Fructosyltransferase (EC.2.4.1.9) and invertase (EC.3.2.1.26) have been purified from the crude extract of Aspergillus niger AS0023 by successive chromatographies on DEAE-sephadex A-25, sepharose 6B, sephacryl S-200, and concanavalin A-Sepharose 4B columns. On acrylamide electrophoresis the two enzymes, in native and denatured forms, gave diffused glycoprotein bands with different electrophoretic mobility. On native-PAGE and SDS-PAGE, both enzymes migrated as polydisperse aggregates yielding broad and diffused bands. This result is typical of heterogeneous glycoproteins and the two enzymes have proved their glycoprotein nature by their adsorption on concanavalin A lectin. Fructosyltransferase (FTS) on native PAGE migrated as two enzymatically active bands with different electrophoretic mobility, one around 600 kDa and the other from 193 to 425 kDa. On SDS-PAGE, these two fractions yielded one band corresponding to a molecular weight range from 81 to 168 kDa. FTS seems to undergo association-dissociation of its glycoprotein subunits to form oligomers with different degrees of polymerization. Invertase (INV) showed higher mobility corresponding to a molecular range from 82 to 251 kDa, on native PAGE, and from 71 to 111 kDa on SDS-PAGE. The two enzymes exhibited distinctly different pH and temperature profiles. The optimum pH and temperature for FTS were found to be 5.8 and 50 degrees C, respectively, while INV showed optimum activity at pH 4.4 and 55 degrees C. Metal ions and other inhibitors had different effects on the two enzyme activities. FTS was completely abolished with 1 mM Hg(2+) and Ag(2+), while INV maintained 72 and 66% of its original activity, respectively. Furthermore, the two enzymes exhibited distinctly different kinetic constants confirming their different nature. The K(m) and V(m) values for each enzyme were calculated to be 44.38 mM and 1030 micromol ml(-1)min(-1) for FTS and 35.67 mM and 398 micromol ml(-1) min(-1) for INV, respectively. FTS and INV catalytic activity was dependent on sucrose concentration. FTS activity increased with increasing sucrose concentrations, while INV activity decreased markedly with increasing sucrose concentration. Furthermore, INV exhibited only hydrolytic activity producing exclusively fructose and glucose from sucrose, while FTS catalyzed exclusively fructosyltransfer reaction producing glucose, 1-kestose, nystose and fructofuranosyl nystose. In addition, at 50% sucrose concentration FTS produced fructooligosaccharides at the yield of 62% against 54% with the crude extract. 相似文献
15.
An intracellular glucose oxidase (GOD) was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger NFCCP. The enzyme was partially purified to a yield of 28.43% and specific activity of 135 U mg(-1) through ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The enzyme showed high specificity for D-glucose, with a K(m) value of 25 mmol L(-1). The enzyme exhibited optimum catalytic activity at pH 5.5. Optimum temperature for GOD-catalyzed D-glucose oxidation was 40 degrees C. The enzyme displayed a high thermostability having a half-life (t(1/2)) of 30 min, enthalpy of denaturation (H*) of 99.66 kJ mol(-1), and free energy of denaturation (G*) of 103.63 kJ mol(-1). These characteristics suggest that GOD from A. niger NFCCP can be used as an analytical reagent and in the design of biosensors for clinical, biochemical, and diagnostic assays. 相似文献
16.
17.
I M Freedberg Y Levin C M Kay W D McCubbin E Katchalski-Katzir 《Biochimica et biophysica acta》1975,391(2):361-381
A specific exo-1,4-glucosidase (1,4-alpha-D-glucan glucohydrooase, EC 3.2.1.3) from Aspergillus niger has been partially purified and subsequently characterized by biochemical, physico-chemical and optical methods. Molecular sieve chromatography yields an enzyme with maximal activity at pH 4.2-4.5 close to its isoelectric point. Reduction and carboxymethylation leads to complete loss of activity and O-acetylation of 3 of the 13 tyrosine residues results in loss of 20 % of the activity. Sodium dodecylsulfate-polyacrylamide gel electrophoresis indicates that the native enzyme consists of two major components of molecular weights 63 000 and 57 500, respectively. Small amounts of dissociated material of molecular weight 28 000 and 16 000 as well as aggregates of the order of 100 000 are also present to the extent of 2-5% of the total potein. Following reduction and carboxymethylation under forcing conditions, the bands around 60 000 diminish and the 28 000-30 000, 16 000 and aggregate bands are dominant... 相似文献
18.
Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively. 相似文献
19.
Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage 总被引:2,自引:0,他引:2
A dimethoate-degrading enzyme from Aspergillus niger ZHY256 was purified to homogeneity with a specific activity of 227.6 U/mg of protein. The molecular mass of the purified enzyme was estimated to be 66 kDa by gel filtration and 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was found to be 5.4, and the enzyme activity was optimal at 50 degrees C and pH 7.0. The activity was inhibited by most of the metal ions and reagents, while it was induced by Cu(2+). The Michaelis constant (K(m)) and V(max) for dimethoate were 1.25 mM and 292 micromol min(-1) mg of protein(-1), respectively. 相似文献
20.
A new alpha-glucuronidase that specifically hydrolyzed O-alpha-D-glucosyluronic acid alpha-D-glucosiduronic acid (trehalose dicarboxylate, TreDC) was purified from a commercial enzyme preparation from Aspergillus niger, and its properties were examined. The enzyme did not degrade O-alpha-D-glucosyluronic acid alpha-D-glucoside, O-alpha-D-glucosyluronic acid beta-D-glucosiduronic acid, O-alpha-D-glucosyluronic acid-(1-->2)-beta-D-fructosiduronic acid, p-nitrophenyl-O-alpha-D-glucosiduronic acid, methyl-O-alpha-D-glucosiduronic acid, or 6-O-alpha-(4-O-alpha-D-glucosyluronic acid)-D-glucosyl-beta-cyclodextrine. Furthermore, it showed no activity on alpha-glucuronyl linkages of 4-O-methyl-D-glucosyluronic acid-alpha-(1-->2)-xylooligosaccharides, derived from xylan, a supposed substrate of alpha-glucuronidases.The molecular mass of the enzyme was estimated to be 120 kDa by gel filtration and 58 kDa by SDS-PAGE suggesting, the enzyme is composed of two identical subunits. It was most active at pH 3.0-3.5 and at 40 degrees C. It was stable in pH 2.0-4.5 and below 30 degrees C. It hydrolyzed O-alpha-D-glucosyluronic acid alpha-D-glucosiduronic acid to produce alpha- and beta-anomers of D-glucuronic acid in an equimolar ratio. This result suggests that inversion of the anomeric configuration of the substrate is involved in the hydrolysis mechanism. 相似文献