首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacteriocin-producing bacterium was isolated from boza and identified as Leuconostoc pseudomesenteroides KM432Bz. The antimicrobial peptide was purified and shown to be identical to other class IIa bacteriocins: leucocin A from Leuconostoc gelidum UAL-187 and Leuconostoc pseudomesenteroides QU15 and leucocin B from Leuconostoc carnosum Ta11a. The bacteriocin was named leucocin B-KM432Bz. Leucocin B-KM432Bz gene cluster encodes the bacteriocin precursor (lcnB), the immunity protein (lcnI) and the dedicated export machinery (lcnD and lcnE). A gene of unknown and non-essential function (lcnC), which is interrupted by an insertion sequence of the IS30 family, is localized between lcnB and lcnD. The activity of leucocin B-KM432Bz requires subunit C of the EIIt Man mannose permease, which is the receptor for entry into target cells. The determination of the minimum inhibitory concentrations revealed the lowest values for leucocin B-KM432Bz over Listeria strains, with 4 to 32 fold better efficiency than pediocin PA-1.  相似文献   

2.
Listeria monocytogenes is a foodborne pathogen causing listeriosis. Listeria in foods can be inhibited with bacteriocins or bacteriocin producing cultures. The aim of this study was to enhance the killing of L. monocytogenes by binding bacteriocin producing Escherichia coli cells to Listeria cells. Antilisterial E. coli was obtained by transferring leucocin C production from Leuconostoc carnosum 4010. For binding of E. coli cells to Listeria cells, the Listeria phage endolysin PlyP35 cell wall binding domain (CBD) was displayed on E. coli cell surface as FliC::CBD chimeric protein in flagella. CBD insertion in flagella was confirmed by Western analysis and enterokinase cleavage. By mixing isolated flagella with L. monocytogenes WSLC 1019 cells, the FliC::CBD flagella was shown to bind to Listeria cells. However, the wild type flagella also attached to Listeria cells masking putative additional binding mediated by the CBD. Yet, the cell-mediated leucocin C killing resulted in two-log reduction of Listeria, whereas the corresponding amount of leucocin C in spent culture medium could only inhibit growth without bacteriocidal effect. Cells binding Listeria and secreting antilisterial peptides may have applications in protection against listeriosis as they kill Listeria better than free antilisterial peptides.  相似文献   

3.
Leuconostoc (Lc.)carnosum Ta11a, isolated from vacuum-packaged processed meats, produced a bacteriocin designated leucocin B-Ta11a. The crude bacteriocin was heat stable and sensitive to proteolytic enzymes, but not to catalase, lysozyme, or chloroform. It was active againstListeria monocytogenes and several lactic acid bacteria. Leucocin B-Ta11a was optimally produced at 25°C in MRS broth at an initial pH of 6.0 or 6.5 An 8.9-MDa plasmid inLeuconostoc carnosum Ta11a hybridized to a 36-mer oligonucleotide probe (JF-1) that was homologous to leucocin A-UAL187. A 4.9-kbSau3A fragment from a partial digest of the 8.9-MDa plasmid was cloned into pUC118. The 8.1-kb recombinant plasmid (pJF8.1) was used for sequencing and revealed the presence of two open reading frames (ORFs). ORF1 codes for a protein of 61 amino acids comprising a 37-amino-acid bacteriocin that was determined to be the leucocin B-Ta11a structural gene by virtue of its homology to leucocin A-UAL 187 (Hastings et al. 1991. J. Bacteriol 173: 7491–7500). The 24-amino-acid N-terminal extension, however, differs from that of leucocin A-UAL187 by seven residues. The predicted protein of the ORF2 has 113 amino acids and is identical with the amino acid sequence of the cognate ORF of the leucocin A-UAL 187 operon.  相似文献   

4.
Plasmid transformation in Leuconostoc carnosum 4010 was analyzed. A successful transformation protocol for L. carnosum was established by modifying an existing protocol for Lactococcus lactis. Several parameters, including the number of generations that the cells had grown at the time of harvest, glycine concentration, the time of incubation for phenotypic expression, and the electrical field strength, were investigated and proved to have influence on the transformation frequency. Electrocompetence was found to be transient and to peak in the early exponential growth phase. Optimized conditions resulted in transformation frequencies of up to 6.7 × 105 transformants per microgram of plasmid DNA. A total of five plasmids in L. carnosum were successfully introduced and maintained. Interestingly, we discovered that DNA uptake was of a frequency of 3 × 10−6 to 19 × 10−6 transformants per CFU in the absence of an applied electrical field. We concluded that L. carnosum is naturally competent.  相似文献   

5.
Leuconostoc (Lc.) mesenteroides TA33a produced three bacteriocins with different inhibitory activity spectra. Bacteriocins were purified by adsorption/desorption from producer cells and reverse phase high-performance liquid chromatography. Leucocin C-TA33a, a novel bacteriocin with a predicted molecular mass of 4598 Da, inhibited Listeria and other lactic acid bacteria (LAB). Leucocin B-TA33a has a predicted molecular mass of 3466 Da, with activity against Leuconostoc/Weissella (W.) strains, and appears similar to mesenterocin 52B and dextranicin 24, while leucocin A-TA33a, which also inhibited Listeria and other LAB strains, is identical to leucocin A-UAL 187. A survey of other known bacteriocin-producing Leuconostoc/Weissella strains for the presence of the three different bacteriocins revealed that production of leucocin A-, B- and C-type bacteriocins was widespread. Lc. carnosum LA54a, W. paramesenteroides LA7a, and Lc. gelidum UAL 187-22 produced all three bacteriocins, whereas W. paramesenteroides OX and Lc. carnosum TA11a produced only leucocin A- and B-type bacteriocins. Received: 11 April 1997 / Accepted: 10 June 1997  相似文献   

6.
7.
Many non-lantibiotic bacteriocins of lactic acid bacteria are produced as precursors which have N-terminal leader peptides that share similarities in amino acid sequence and contain a conserved processing site of two glycine residues in positions -1 and -2. A dedicated ATP-binding cassette (ABC) transporter is responsible for the proteolytic cleavage of the leader peptides and subsequent translocation of the bacteriocins across the cytoplasmic membrane. To investigate the role that these leader peptides play in the recognition of the precursor by the ABC transporters, the leader peptides of leucocin A, lactococcin A or colicin V were fused to divergicin A, a bacteriocin from Carnobacterlum divergens that is secreted via the cell's general secretion pathway. Production of divergicin was monitored when these fusion constructs were introduced into Leuconostoc gelidum, Lactococcus lactis and Escherichia coli, which carry the secretion apparatus for leucocin A, lactococcins A and B, and colicin V, respectively. The different leader peptides directed the production of divergicin in the homologous hosts. In some cases production of divergicin was also observed when the leader peptides were used in heterologous hosts. For ABC-transporter-dependent secretion in E. coli the outer membrane protein TolC was required. Using this strategy, colicin V was produced in L. lactis by fusing this bacteriocin behind the leader peptide of leucocin A.  相似文献   

8.
Leuconostoc carnosum was shown to be the specific spoilage organism in vacuum-packaged, sliced, cooked ham showing spoilage during 3 weeks of shelf life. Identification of the specific spoilage organism was done by use of phenotypic data and ClaI, EcoRI, and HindIII reference strain ribopatterns. One hundred L. carnosum isolates associated with the production and spoilage of the ham were further characterized by pulsed-field gel electrophoresis (PFGE), together with some meat-associated Leuconostoc species: L. citreum, L. gelidum, L. mesenteroides subsp. dextranicum, and L. mesenteroides subsp. mesenteroides. ApaI and SmaI digests divided the industrial L. carnosum strains into 25 different PFGE types, ApaI and SmaI types being consistent. Only one specific PFGE type was associated with the spoiled packages. This type also was detected in air and raw-meat mass samples. The spoilage strain did not produce bacteriocins. Only seven isolates belonging to three different PFGE types produced bacteriocins. Similarity analysis of the industrial L. carnosum strains revealed a homogeneous cluster which could be divided into eight subclusters consisting of strains having at most three-fragment differences. The L. carnosum cluster was clearly distinguished from the other meat-associated leuconostoc clusters, with the exception of the L. carnosum type strain. Ribotyping can be very helpful in the identification of L. carnosum, but its discriminatory power is too weak for strain characterization. PFGE provides good discrimination for studies dealing with the properties of homogeneous L. carnosum strains.  相似文献   

9.
Leucocin A is a small heat-stable bacteriocin produced by Leuconostoc gelidum UAL187. A 2.9-kb fragment of plasmid DNA that contains the leucocin structural gene and a second open reading frame (ORF) in an operon was previously cloned (J. W. Hastings, M. Sailer, K. Johnson, K. L. Roy, J. C. Vederas, and M. E. Stiles, J. Bacteriol. 173:7491-7500, 1991). When a 1-kb DraI-HpaI fragment containing this operon was introduced into a bacteriocin-negative variant (UAL187-13), immunity but no leucocin production was detected. Leucocin production was observed when an 8-kb SacI-HindIII fragment of the leucocin plasmid was introduced into L. gelidum UAL187-13 and Lactococcus lactis IL1403. Nucleotide sequence analysis of this 8-kb fragment revealed the presence of three ORFs in an operon upstream of and on the strand opposite from the leucocin structural gene. The first ORF (lcaE) encodes a putative protein of 149 amino acids with no apparent function in leucocin A production. The second ORF (lcaC) contains 717 codons that encode a protein homologous to members of the HlyB family of ATP-binding cassette transporters. The third ORF (lcaD) contains 457 codons that encode a protein with marked similarity to LcnD, a protein essential for the expression of the lactococcal bacteriocin lactococcin A. Deletion mutations in lcaC and lcaD resulted in loss of leucocin production, indicating that LcaC and LcaD are involved in production and translocation of leucocin A. The secretion apparatus for lactococcin A did not complement mutations in the lcaCD genes to express leucocin A in L. lactis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Aim: To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Methods and Results: Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A‐QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A‐QU 15 were identical to that of leucocin A‐UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C‐terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A‐QU 15, leucocin Q and leucocin N were obtained. Conclusions: These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C‐terminal region of leucocin A‐QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A‐QU 15 was not. Significance and Impact of Study: These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity.  相似文献   

11.
Leuconostoc pseudomesenteroides 607, isolated from persimmon fruit, was found to have high inhibitory activity against Listeria monocytogenes and several other Gram-positive bacteria. Inhibitory substances were purified from culture supernatant by ion-exchange chromatography, Sep-Pak C18 cartridge, and reverse-phase high-performance liquid chromatography (RP-HPLC). Two antibacterial peptides were observed during the purification procedures. One of these peptides had a molecular size of 4623.05 Da and a partial N-terminal amino acid sequence of NH2-KNYGNGVHxTKKGxS, in which the YGNGV motif is specific for class IIa bacteriocins. A BLAST search revealed that this bacteriocin was similar to leucocin C from Leuconostoc mesenteroides. Leucocin C-specific primers were designed and a single PCR product was amplified. Analysis of the nucleotide sequence has revealed a putative peptide differing by only one amino acid residue from the sequence of leucocin C. No identical peptide or protein has been reported in the literature, and this peptide, termed leucocin C-607, was therefore considered to be a new variant of leucocin C produced by Leuc. pseudomesenteroides 607. Another antibacterial peptide purified from the same culture supernatant had a molecular size of 3007.7 or 3121.97 Da. However, detailed information regarding this second peptide remains to be determined. Distinct characteristics, such as heat stability and inhibitory spectrum, were observed for the two bacteriocins produced by Leuc. pseudomesenteroides 607. These results suggested that Leuc. pseudomesenteroides 607 produces leucocin C-607 along with another unknown bacteriocin.  相似文献   

12.
Leuconostoc carnosum strain JB16 was isolated from kimchi, the traditional Korean fermented food. Here, we report the complete genome sequence of L. carnosum strain JB16, consisting of a 1,645,096-bp circular chromosome with a G+C content of 37.24% and four plasmids.  相似文献   

13.
Summary Leuconostoc carnosum LA54A produces a bacteriocin which is active againstListeria monocytogenes andListeria innocua. The ability ofLc. carnosum to produce the bacteriocin at various combinations of the growth parameters pH and temperature was analyzed. In the case of this strain bacteriocin production seems to be coupled to growth rate. This fact enables the prediction ifLc. carnosum can produce the bacteriocin at a given set of growth parameters, simply by predicting the growth rate of this organism. In addition we have analyzed the growth behavior of the target organismL. innocua WS2258 at the same set of growth parameters.  相似文献   

14.
15.
Genetic and biochemical evidence for a defective xylan degradation pathway was found linked to the xylose operon in three lactococcal strains, Lactococcus lactis 210, L. lactis IO-1, and L. lactis NRRL B-4449. Immediately downstream of the xylulose kinase gene (xylB) (K. A. Erlandson, J.-H. Park, W. El Khal, H.-H. Kao, P. Basaran, S. Brydges, and C. A. Batt, Appl. Environ. Microbiol. 66:3974–3980, 1999) are two open reading frames encoding a mutarotase (xylM) and a xyloside transporter (xynT) and a partial open reading frame encoding a β-xylosidase (xynB). These are functions previously unreported for lactococci or lactobacilli. The mutarotase activity of the putative xylM gene product was confirmed by overexpression of the L. lactis enzyme in Escherichia coli and purification of recombinant XylM. We hypothesize that the mutarotase links xylan degradation to xylose metabolism due to the anomeric preference of xylose isomerase. In addition, Northern hybridization experiments suggested that the xylM and xynTB genes are cotranscribed with the xylRAB genes, responsible for xylose metabolism. Although none of the three strains appeared to metabolize xylan or xylobiose, they exhibited xylosidase activity, and L. lactis IO-1 and L. lactis NRRL B-4449 had functional mutarotases.  相似文献   

16.
Abstract The lactacin F complex, composed of LafA and LafX peptides, is produced by Lactobacillus johnsonii VPI 11088 (ATCC 11506) and is active against various lactobacilli and Enterococcus faecalis . The genetic determinants encoding the lactacin F peptides, LafA and LafX, are organized in a chromosomal operon comprised of genes lafA, lafX , and ORFZ. The lactacin F operon was introduced into Leuconostoc (Lc.) gelidum UAL187-22 which produces leucocin A. Leucocin A, a plasmid-encoded bacteriocin, inhibits E. faecalis, Listeria monocytogenes , and other lactic acid bacteria. The culture supernatant of the Leuconostoc transformant containing the lactacin F operon inhibited both lactacin F-and leucocin A-sensitive indicators. Concurrent expression of both bacteriocins did not alter the production of native leucocin A. Additive inhibitory effects due to the presence of both bacteriocins were not observed. An isogenic derivative of UAL187-22, which has lost the leucocin-encoding plasmid, was unable to produce active lactacin F when transformed with the appropriate recombinant plasmid. The ability of Lc. gelidum UAL187-22 to produce lactacin F demonstrates that the export system for leucocin A is capable of producing both bacteriocins simultaneously.  相似文献   

17.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37°C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 103 CFU of L. monocytogenes/ml and 105 CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37°C for 24 h, 15°C for 14 days, 8°C for 21 days, and 4°C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37°C, two at 15 and 8°C, and three at 4°C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4°C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log10 CFU of L. monocytogenes/cm2). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37°C.  相似文献   

18.
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.  相似文献   

19.
Citrate metabolism in the lactic acid bacterium Leuconostoc mesenteroides generates an electrochemical proton gradient across the membrane by a secondary mechanism (C. Marty-Teysset, C. Posthuma, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Bacteriol. 178:2178–2185, 1996). Reports on the energetics of citrate metabolism in the related organism Lactococcus lactis are contradictory, and this study was performed to clarify this issue. Cloning of the membrane potential-generating citrate transporter (CitP) of Leuconostoc mesenteroides revealed an amino acid sequence that is almost identical to the known sequence of the CitP of Lactococcus lactis. The cloned gene was expressed in a Lactococcus lactis Cit strain, and the gene product was functionally characterized in membrane vesicles. Uptake of citrate was counteracted by the membrane potential, and the transporter efficiently catalyzed heterologous citrate-lactate exchange. These properties are essential for generation of a membrane potential under physiological conditions and show that the Leuconostoc CitP retains its properties when it is embedded in the cytoplasmic membrane of Lactococcus lactis. Furthermore, using the same criteria and experimental approach, we demonstrated that the endogenous CitP of Lactococcus lactis has the same properties, showing that the few differences in the amino acid sequences of the CitPs of members of the two genera do not result in different catalytic mechanisms. The results strongly suggest that the energetics of citrate degradation in Lactococcus lactis and Leuconostoc mesenteroides are the same; i.e., citrate metabolism in Lactococcus lactis is a proton motive force-generating process.  相似文献   

20.
The genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively. Eighty-three genes were restricted to serotype 1/2a and 51 to serotype 4b strains. These strain- and serotype-specific genes probably contribute to observed differences in pathogenicity, and the ability of the organisms to survive and grow in their respective environmental niches. The serotype 1/2a-specific genes include an operon that encodes the rhamnose biosynthetic pathway that is associated with teichoic acid biosynthesis, as well as operons for five glycosyl transferases and an adenine-specific DNA methyltransferase. A total of 8603 and 105 050 high quality single nucleotide polymorphisms (SNPs) were found on the draft genome sequences of strain H7858 and strain F6854, respectively, when compared with strain F2365. Whole genome comparative analyses revealed that the L.monocytogenes genomes are essentially syntenic, with the majority of genomic differences consisting of phage insertions, transposable elements and SNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号