首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quest for non-coding RNAs (ncRNAs) in the last few years has revealed a surprisingly large number of small RNAs belonging to previously known as well as entirely novel classes. Computational and experimental approaches have uncovered new ncRNAs in all kingdoms of life. In this work, we used a shotgun cloning approach to construct full-length cDNA libraries of small RNAs from the eukaryotic model organism Dictyostelium discoideum. Interestingly, two entirely novel classes of RNAs were identified of which one is developmentally regulated. The RNAs within each class share conserved 5'- and 3'-termini that can potentially form stem structures. RNAs of both classes show predominantly cytoplasmic localization. In addition, based on conserved structure and/or sequence motifs, several of the identified ncRNAs could be divided into classes known from other organisms, e.g. 18 small nucleolar RNA candidates (17 box C/D, of which a few are developmentally regulated, and one box H/ACA). Two ncRNAs showed a high degree of similarity to the small nuclear U2 RNA and signal recognition particle RNA (SRP RNA), respectively. Furthermore, the majority of the regions upstream of the sequences encoding the isolated RNAs share conserved motifs that may constitute new promoter elements.  相似文献   

2.
It has been known for decades that some clinically important viruses encode abundant amounts of non-coding RNAs (ncRNAs) during infection. Until recently, the number of viral ncRNAs identified was few and their functions were mostly unknown. Although our understanding is still in its infancy, several recent reports have identified new functions for viral microRNAs and larger ncRNAs. These results so far show that different classes of viral ncRNAs act to autoregulate viral gene expression and evade host antiviral defences such as apoptosis and the immune response.  相似文献   

3.
4.
We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) or clear homologs of known C. elegans ncRNAs. Most of these signals are located in introns or at a distance from known protein-coding genes. With an estimated false positive rate of about 50% and a sensitivity on the order of 50%, we estimate that the nematode genomes contain between 3,000 and 4,000 RNAs with evolutionary conserved secondary structures. Only a small fraction of these belongs to the known RNA classes, including tRNAs, snoRNAs, snRNAs, or microRNAs. A relatively small class of ncRNA candidates is associated with previously observed RNA-specific upstream elements.  相似文献   

5.
6.
With the completion of large scale genomic sequencing, a great number of non-conding RNAs (ncRNAs) have been discovered and capture the attention of the biological sciences community. All known ncRNAs may be divided into two groups, namely: i—small ncRNAs, which comprise microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and short interfering RNAs (siRNAs), and ii—several thousands of long ncRNAs (lncRNAs). NcRNAs were shown to be involved in eukaryotic growth and development, cell proliferation and differentiation, apoptosis, epigenetic modifications, and also the complex control and pathogenesis of various diseases. In this paper, knowledge on the ncRNAs, which functioning is associated with human diseases, has been summarized.  相似文献   

7.
8.
Cellular RNAs that do not function as messenger RNAs (mRNAs), transfer RNAs (tRNAs) or ribosomal RNAs (rRNAs) comprise a diverse class of molecules that are commonly referred to as non-protein-coding RNAs (ncRNAs). These molecules have been known for quite a while, but their importance was not fully appreciated until recent genome-wide searches discovered thousands of these molecules and their genes in a variety of model organisms. Some of these screens were based on biocomputational prediction of ncRNA candidates within entire genomes of model organisms. Alternatively, direct biochemical isolation of expressed ncRNAs from cells, tissues or entire organisms has been shown to be a powerful approach to identify ncRNAs both at the level of individual molecules and at a global scale. In this review, we will survey several such wet-lab strategies, i.e. direct sequencing of ncRNAs, shotgun cloning of small-sized ncRNAs (cDNA libraries), microarray analysis and genomic SELEX to identify novel ncRNAs, and discuss the advantages and limits of these approaches.  相似文献   

9.
10.
The 165-kb catabolic plasmid pAO1 enables the gram-positive soil bacterium Arthrobacter nicotinovorans to grow on the tobacco alkaloid L-nicotine. The 165,137-nucleotide sequence, with an overall G+C content of 59.7%, revealed, besides genes and open reading frames (ORFs) for nicotine degradation, a complete set of ORFs for enzymes essential for the biosynthesis of the molybdenum dinucleotide cofactor, as well as ORFs related to uptake and utilization of carbohydrates, sarcosine, and amino acids. Of the 165 ORFs, approximately 50% were related to metabolic functions. pAO1 conferred to A. nicotinovorans the ability to take up L-[(14)C]nicotine from the medium, with an K(m) of 5.6 +/- 2.2 micro M. ORFs of putative nicotine transporters formed a cluster with the gene of the D-nicotine-specific 6-hydroxy-D-nicotine oxidase. ORFs related to replication, chromosome partitioning, and natural transformation functions (dprA) were identified on pAO1. Few ORFs showed similarity to known conjugation-promoting proteins, but pAO1 could be transferred by conjugation to a pAO1-negative strain at a rate of 10(-2) to 10(-3) per donor. ORFs with no known function represented approximately 35% of the pAO1 sequence. The positions of insertion sequence elements and composite transposons, corroborated by the G+C content of the pAO1 sequence, suggest a modular composition of the plasmid.  相似文献   

11.
12.
13.
The signal recognition particle (SRP) plays a pivotal role in transporting proteins to cell membranes. In higher eukaryotes, SRP consists of an RNA molecule and six proteins. The largest of the SRP proteins, SRP72, was found previously to bind to the SRP RNA. A fragment of human SRP72 (72c') bound effectively to human SRP RNA but only weakly to the similar SRP RNA of the archaeon Methanococcus jannaschii. Chimeras between the human and M. jannaschii SRP RNAs were constructed and used as substrates for 72c'. SRP RNA helical section 5e contained the 72c' binding site. Systematic alteration within 5e revealed that the A240G and A240C changes dramatically reduced the binding of 72c'. Human SRP RNA with a single A240G change was unable to form a complex with full-length human SRP72. Two small RNA fragments, one composed of helical section 5ef, the other of section 5e, competed equally well for the binding of 72c', demonstrating that no other regions of the SRPR RNA were required. The biochemical data completely agreed with the nucleotide conservation pattern observed across the phylogenetic spectrum. Thus, most eukaryotic SRP RNAs are likely to require for function an adenosine within their 5e motifs. The human 5ef RNA was remarkably resistant to ribonucleolytic attack suggesting that the 240-AUC-242 "loop" and its surrounding nucleotides form a peculiar compact structure recognized only by SRP72.  相似文献   

14.
15.
16.
17.
18.
Saito S  Kakeshita H  Nakamura K 《Gene》2009,428(1-2):2-8
Small, non-coding RNAs (ncRNAs) perform diverse functions in a variety of organisms, but few ncRNAs have been identified in Bacillus subtilis. To search the B. subtilis genome for genes encoding ncRNAs, we focused on 123 intergenic regions (IGRs) over 500 bp in length and analyzed expression from these regions. Seven IGRs termed bsrC, bsrD, bsrE, bsrF, bsrG, bsrH and bsrI expressed RNAs smaller than 380 nt. All small RNAs except BsrD RNA were expressed in transformed Escherichia coli cells harboring a plasmid with PCR-amplified IGRs of B. subtilis, indicating that their own promoters independently express small RNAs. Under the non-stressed condition, depletion of the genes for the small RNAs did not affect growth. Although their functions are unknown, gene expression profiles at several time points showed that most of the genes except for bsrD were expressed during the vegetative phase (4-6 h), but undetectable during the stationary phase (8 h). Mapping the 5' ends of the 6 small RNAs revealed that the genes for BsrE, BsrF, BsrG, BsrH, and BsrI RNAs are preceded by a recognition site for RNA polymerase sigma factor sigma(A). These small RNAs might lack an SD sequence and exert their actions as ncRNAs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号