共查询到20条相似文献,搜索用时 15 毫秒
1.
Using electron microscopy and immunofluorescent labeling of adherens junctions, we have reconstructed the changes in cell architecture and intercellular associations that occur during morphogenesis of the nematode male tail tip. During late postembryonic development, the Caenorhabditis elegans male tail is reshaped to form a copulatory structure. The most posterior hypodermal cells in the tail define a specialized, sexually dimorphic compartment in which cells fuse and retract in the male, changing their shape from a tapered cone to a blunt dome. Developmental profiles using electron microscopy and immunofluorescent staining suggest that cell fusions are initiated at or adjacent to adherens junctions. Anterior portions of the tail tip cells show the first evidence of retractions and fusions, consistent with our hypothesis that an anterior event triggers these morphogenetic events. Available mutations that interfere with morphogenesis implicate particular regulatory pathways and suggest loci at which evolutionary changes could have produced morphological diversity. 相似文献
2.
The cell-biological events that guide early-embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. 相似文献
3.
S W Emmons 《BioEssays : news and reviews in molecular, cellular and developmental biology》1992,14(5):309-316
The C. elegans male tail is being studied as a model to understand how genes specify the form of multicellular animals. Morphogenesis of the specialized male copulatory organ takes place in the last larval stages during male development. Genetic analysis is facilitated because the structure is not necessary for male viability or for strain propagation. Analysis of developmental mutants, isolated in several functional and morphological screens, has begun to reveal how fates of cells are determined in the cell lineages, and how the specification of cell fates affects the morphology of the structure. Cytological studies in wild type and in mutants have been used to study the mechanism of pattern formation in the tail peripheral nervous system. The ultimate goal is to define the entire pathway leading to the male copulatory organ. 相似文献
4.
Maduro MF 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(10):1010-1022
The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell-fate-specification pathways. This GRN contains both cell-autonomous and cell non-autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity. 相似文献
5.
Caenorhabditis elegans male tail has nine pairs of bilaterally symmetric ray processes extended into a cuticular fan. The formation of these structures involves both cell lineage differentiation and cellular morphogenesis. Nine mutations were examined, all of which presented an amorphous ray phenotype. Glycoconjugates carrying an N-acetylglucosamine (GlcNAc) epitope were detected at a high level in their male bursa. It was shown that these antigens are not responsible for the morphological defects. It was further demonstrated that these ram and mab gene products represent critical components for male tail cuticle organization. Mutations of them abolish the integrity of the male bursal cuticle and unmask the underlying GlcNAc epitope. 相似文献
6.
Mutation of the gene fem-2 causes feminization of both sexes: hermaphrodites make no sperm, and males produce oocytes in an intersexual somatic gonad. A double mutant harboring ts alleles of both fem-1 (formerly named isx-1; G. A. Nelson, K. K. Lew, and S. Ward, 1978, Dev. Biol. 66, 386-409) and fem-2 causes transformation of XO animals (normally male) into spermless hermaphrodites at restrictive temperature. The phenotypes, temperature-sensitive periods, and maternal effects observed in mutants of each fem gene are found to be similar. It is suggested that the fem genes are centrally involved in specification of male development in Caenorhabditis elegans--both in the germ line of hermaphrodites and in somatic and germ line tissues of males. 相似文献
7.
The nongonadal cells in the male nematode Caenorhabditis elegans have been followed through maturation by Nomarski microscopy. Many of the cells are incorporated into the copulatory apparatus, which includes the cloaca, copulatory spicules, sensilla, and musculature. This region has been reconstructed by serial section electron microscopy in order to identify the cell types that arise from known lineages. With the exception of certain bilaterally symmetrical pairs the cells have invariant fates. The development involves a variety of well-defined cell interactions, individual and collective cell movements, cell deaths mediated by designated killers, and the reorganisation of a muscle. The male structures overlie an almost unchanged hermaphrodite tail; their development is more complex than that of the hermaphrodite, and more liable to error. 相似文献
8.
Pellerone FI Archer SK Behm CA Grant WN Lacey MJ Somerville AC 《International journal for parasitology》2003,33(11):1195-1206
The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes. 相似文献
9.
Background
The nematode Caenorhabditis elegans is able to take up external double-stranded RNAs (dsRNAs) and mount an RNA interference response, leading to the inactivation of specific gene expression. The uptake of ingested dsRNAs into intestinal cells has been shown to require the SID-2 transmembrane protein in C. elegans. By contrast, C. briggsae was shown to be naturally insensitive to ingested dsRNAs, yet could be rendered sensitive by transgenesis with the C. elegans sid-2 gene. Here we aimed to elucidate the evolution of the susceptibility to external RNAi in the Caenorhabditis genus.Principal Findings
We study the sensitivity of many new species of Caenorhabditis to ingested dsRNAs matching a conserved actin gene sequence from the nematode Oscheius tipulae. We find ample variation in the Caenorhabditis genus in the ability to mount an RNAi response. We map this sensitivity onto a phylogenetic tree, and show that sensitivity or insensitivity have evolved convergently several times. We uncover several evolutionary losses in sensitivity, which may have occurred through distinct mechanisms. We could render C. remanei and C. briggsae sensitive to ingested dsRNAs by transgenesis of the Cel-sid-2 gene. We thus provide tools for RNA interference studies in these species. We also show that transgenesis by injection is possible in many Caenorhabditis species.Conclusions
The ability of animals to take up dsRNAs or to respond to them by gene inactivation is under rapid evolution in the Caenorhabditis genus. This study provides a framework and tools to use RNA interference and transgenesis in various Caenorhabditis species for further comparative and evolutionary studies. 相似文献10.
11.
Grant WN 《Parasitology today (Personal ed.)》1992,8(10):344-346
Our knowledge of many aspects of the molecular biology of animal parasitic nematodes has rapidly expanded in recent years but the classical genetic analysis of this group of organisms has yet to emerge as a viable discipline. For example, it is not possible to routinely perform crosses between single males and females to examine the genetic basis of even simple phenotypes such as anthelmintic resistance. This has meant that the function of many cloned parasite genes can only be inferred from sequence comparison with genes from other organisms where the function is known, or by correlation of DNA polymorphisms linked to the gene with phenotypic differences between strains or individuals. In the absence of classical genetic techniques, a molecular solution is to transform a suitable host with the gene of interest, but what defines a suitable host? Here, Warwick Grant describes recent work that aims to provide such a host. 相似文献
12.
Background
To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating. 相似文献13.
Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae 总被引:1,自引:0,他引:1 下载免费PDF全文
Whole genome sequencing of several metazoan model organisms provides a platform for studying genome evolution. How representative are the genomes of these model organisms for their respective phyla? Within nematodes, for example, the free-living soil nematode Caenorhabditis elegans is a highly derived species with unusual genomic characters, such as a reduced Hox cluster (Curr. Biol., 13, 37–40) and the absence of a Hedgehog signaling system. Here, we describe the recent loss of a DNA methyltransferase-2 gene (dnmt-2) in C.elegans. A dnmt-2-like gene is present in the satellite model organism Pristionchus pacificus, another free-living nematode that diverged from C.elegans 200–300 million years ago. In contrast, C.elegans, Caenorhabditis briggsae and P.pacificus all contain an mbd-2-like gene, which encodes another essential component of the methylation system of higher animals and fungi. Cel-mbd-2 is expressed throughout development and RNA interference (RNAi) experiments result in variable phenotypes. In contrast, Cbr-mbd-2 RNAi results in paralyzed larval or adult worms suggesting recent changes of gene function within the genus Caenorhabditis. We speculate that both genes were part of an ancestral DNA methylation system in nematodes and that gene loss and sequence divergence have abolished DNA methylation in C.elegans. 相似文献
14.
Ostrow D Phillips N Avalos A Blanton D Boggs A Keller T Levy L Rosenbloom J Baer CF 《Genetics》2007,176(3):1653-1661
Mutational bias is a potentially important agent of evolution, but it is difficult to disentangle the effects of mutation from those of natural selection. Mutation-accumulation experiments, in which mutations are allowed to accumulate at very small population size, thus minimizing the efficiency of natural selection, are the best way to separate the effects of mutation from those of selection. Body size varies greatly among species of nematode in the family rhabditidae; mutational biases are both a potential cause and a consequence of that variation. We report data on the cumulative effects of mutations that affect body size in three species of rhabditid nematode that vary fivefold in adult size. Results are very consistent with previous studies of mutations underlying fitness in the same strains: two strains of Caenorhabditis briggsae decline in body size about twice as fast as two strains of C. elegans, with a concomitant higher point estimate of the genomic mutation rate; the confamilial Oscheius myriophila is intermediate. There is an overall mutational bias, such that mutations reduce size on average, but the bias appears consistent between species. The genetic correlation between mutations that affect size and those underlying fitness is large and positive, on average. 相似文献
15.
In several types of animals, muscle cells use membrane extensions to contact motor axons during development. To better understand the process of membrane extension in muscle cells, we investigated the development of Caenorhabditis elegans muscle arms, which extend to motor axons and form the postsynaptic element of the neuromuscular junction. We found that muscle arm development is a highly regulated process: the number of muscle arms extended by each muscle, the shape of the muscle arms and the path taken by the muscle arms to reach the motor axons are largely stereotypical. We also investigated the role of several cytoskeletal components and regulators during arm development, and found that tropomyosin (LEV-11), the actin depolymerizing activity of ADF/cofilin (UNC-60B) and, surprisingly, myosin heavy chain B (UNC-54) are each required for muscle arm extension. This is the first evidence that UNC-54, which is found in thick filaments of sarcomeres, can also play a role in membrane extension. The muscle arm phenotypes produced when these genes are mutated support a 'two-phase' model that distinguishes passive muscle arm development in embryogenesis from active muscle arm extension during larval development. 相似文献
16.
We have studied how a set of male-specific sensory neurons in Caenorhabditis elegans establish axonal connections during postembryonic development. In the adult male, 9 bilateral pairs of ray sensory neurons innervate an acellular fan that serves as a presumptive tactile and olfactory organ during copulation. We visualized ray axon commissures with a ray neuron-specific reporter gene and studied both known and new mutations that affect the establishment of connections to the pre-anal ganglion. We found that the UNC-6/netrin-UNC-40/DCC pathway provides the primary dorsoventral guidance cue to ray axon growth cones. Some axon growth cones also respond to an anteroposterior cue, following a segmented pathway, and most or all also have a tendency to fasciculate. Two newly identified genes, rax-1 and rax-4, are highly specific to the ray neurons and appear to be required for ray axon growth cones to respond to the dorsoventral cue. Among other genes we identified, rax-2 and rax-3 affect anteroposterior signaling or fate specification and rax-5 and rax-6 affect ray identities. We identified a mutation in sax-2 and show that the sax-2/Furry and sax-1/Tricornered pathway affects ectopic neurite outgrowth and establishment of normal axon synapses. Finally, we identified mutations in genes for muscle proteins that affect axon pathways by distorting the conformation of the body wall. Thus ray axon pathfinding relies on a variety of general and more ray neuron-specific genes and provides a potentially fruitful system for further studies of how migrating axon growth cones locate their targets. This system is applicable to the study of mechanisms underlying topographic mapping of sensory neurons into target circuitry where the next stage of information processing is carried out. 相似文献
17.
Evolution of male longevity bias in nematodes 总被引:4,自引:0,他引:4
Many animal species exhibit sex differences in aging. In the nematode Caenorhabditis elegans, under conditions that minimize mortality, males are the longer-lived sex. In a survey of 12 independent C. elegans isolates, we find that this is a species-typical character. To test the hypothesis that the C. elegans male longevity bias evolved as a consequence of androdioecy (having males and hermaphrodites), we compared sex-specific survival in four androdioecious and four dioecious (males and females) nematode species. Contrary to expectation, in all but C. briggsae (androdioecious), males were the longer-lived sex, and this difference was greatest among dioecious species. Moreover, male lifespan was reduced in androdioecious species relative to dioecious species. The evolutionary theory of aging predicts the evolution of a shorter lifespan in the sex with the greater rate of extrinsic mortality. We demonstrate that in each of eight species early adult mortality is elevated in females/hermaphrodites in the absence of food as the consequence of internal hatching of larvae (matricide). This age-independent mortality risk can favour the evolution of rapid aging in females and hermaphrodites relative to males. 相似文献
18.
Missal K Zhu X Rose D Deng W Skogerbø G Chen R Stadler PF 《Journal of experimental zoology. Part B. Molecular and developmental evolution》2006,306(4):379-392
We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) or clear homologs of known C. elegans ncRNAs. Most of these signals are located in introns or at a distance from known protein-coding genes. With an estimated false positive rate of about 50% and a sensitivity on the order of 50%, we estimate that the nematode genomes contain between 3,000 and 4,000 RNAs with evolutionary conserved secondary structures. Only a small fraction of these belongs to the known RNA classes, including tRNAs, snoRNAs, snRNAs, or microRNAs. A relatively small class of ncRNA candidates is associated with previously observed RNA-specific upstream elements. 相似文献
19.
Information on the functional genomics of Caenorhabditis elegans has increased significantly in the last few years with the development of RNA interference. In parasitic nematodes, RNA interference has shown some success in gene knockdown but optimisation of this technique will be required before it can be adopted as a reliable functional genomics tool. Comparative studies in C. elegans remain an appropriate alternative for studying the function and regulation of some parasite genes and will be extremely useful for fully exploiting the increasing parasite genome sequence data becoming available. 相似文献
20.
The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5′ region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine π lineage cells. We found that the π enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate π-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes. 相似文献