首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
100 000 × g soluble extracts from interscapular brown adipose tissue catalyzed the transfer of the terminal phosphoryl group from GTP to histone. Maximal velocity was achieved only with both cyclic AMP and ATP present. The cyclic AMP dose-response curve was the same as for the ATP-utilizing enzyme, with maximum stimulation at 0.5 μM. ATP (1–100 μM) increased the rate of histone phosphorylation with GTP as the radioactive substrate. Higher concentrations had a dilution effect similar to that of GTP on the ATP-utilizing enzyme. Similar effects were observed with ADP and AMP. The apparent Km values for histone were the same with both GTP and ATP as nucleotide substrates. The effects of pH, purified beef muscle kinase inhibitor and of NaCl were also the same. Maximum velocities of histone phosphorylation from ATP and those from GTP were almost the same in brown fat of all age groups tested. Separated on histone-Sepharose, the GTP-utilizing activity was absolutely dependent on the re-addition of the ATP-utilizing enzyme (a linear relationship with a slope of approx. 0.95). An extremely active nucleotide phosphotransferase activity was found in the same subcellular fraction. The rate of equilibration of the γ-32 P between GTP and ATP could account for all the histone phosphorylation with [γ-32 P] GTP. It is concluded that, in spite of the presence of nucleotide phosphotransferase and ATP-protein kinase activities, a direct transfer from GTP to a protein substrate cannot be excluded. Also, histone may not be the natural protein acceptor for GTP-linked phosphorylation.  相似文献   

2.
Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in Vmax of the enzyme activity by these phospholipids significantly decreased the Km indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K½ = 114 nM) compared to PA (K½ = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.  相似文献   

3.
A novel calcium-dependent protein kinase (CDPK) previously reported to be activated by the direct binding of Ca2+, and requiring neither calmodulin nor phospholipids for activity [Harmon, A.C., Putnam-Evans, C.L., & Cormier, M.J. (1987) Plant Physiol. 83, 830-837], was purified to greater than 95% homogeneity from suspension-cultured soybean cells (Glycine max, L. Wayne). Purification was achieved by chromatography on DEAE-cellulose, phenyl-Sepharose, Sephadex G-100, and Blue Sepharose. The purified enzyme (native molecular mass = 52,200 Da) resolved into two immunologically related protein bands of 52 and 55 kDa on 10% SDS gels. Enzyme activity was stimulated 40-100-fold by micromolar amounts of free calcium (K0.5 = 1.5 microM free calcium) and was dependent upon millimolar Mg2+. CDPK phosphorylated lysine-rich histone III-S and chicken gizzard myosin light chains but did not phosphorylate arginine-rich histone, phosvitin, casein, protamine, or Kemptide. Phosphorylation of histone III-S, but not autophosphorylation, was inhibited by KCl. CDPK displayed a broad pH optimum (pH 7-9), and kinetic studies revealed a Km for Mg2(+)-ATP of 8 microM and a Vmax of 1.7 mumol min-1 mg-1 with histone III-S (Km = 0.13 mg/mL) as substrate. Unlike many other protein kinases, CDPK was able to utilize Mg2(+)-GTP, in addition to Mg2(+)-ATP, as phosphate donor. The enzyme phosphorylated histone III-S exclusively on serine; however, CDPK autophosphorylated on both serine and threonine residues. These properties demonstrate that CDPK belongs to a new class of protein kinase.  相似文献   

4.
5.
The GA-signal transduction pathways downstream to the Gα protein in rice seedling root were investigated using in-gel kinase assay and in vitro protein phosphorylation techniques with a Gα protein defective mutant, d1. A 50-kDa protein kinase was detected downstream to Gα protein in the membrane fraction of rice seedling roots using an in-gel kinase assay with histone III-S as a substrate. The activity of a 50-kDa protein kinase increased in the wild-type rice by gibberellin (GA3) treatment, but did not change in the d1 mutant. This protein kinase activity was inhibited by the Ca2+ chelator ethyleneglycol-bis-(beta-aminoethylether)-N,N,N 1,N 1-tetraacetic acid (EGTA), protein kinase inhibitors, staurosporine and H7, and calmodulin antagonist, trifluoperazine, suggesting that the 50-kDa protein kinase is a putative plant Ca2+-dependent protein kinase (CDPK). The activity of the 50-kDa putative CDPK reached its highest level at 3 h after GA3 treatment and then gradually declined with time. In order to identify the endogenous substrate for 50-kDa putative CDPK, two-dimensional polyacrylamide gel electrophoresis followed by in vitro protein phosphorylation was carried out. The phosphorylation activity of an endogenous protein PP30, identified as an unknown protein having molecular weight 30 kDa and isoelectric point 5.8 was increased in the wild-type rice by GA3 treatment, compared with the d1 mutant. The addition of GA3 treated membrane fraction, which predominantly represent a 50-kDa putative CDPK further increased the phosphorylation of PP30. Almost similar to GA3 treatment, phosphorylation activity of PP30 was also increased by the treatment with cholera toxin in the wild-type rice but not in d1 mutant. These results suggest that the 50-kDa putative CDPK and an unknown protein, PP30 promoted by GA3 treatment are G-protein mediated in rice seedling roots.  相似文献   

6.
A heat-stable, soluble component of brown adipose tissue from newborn rats was found to be readily phosphorylated by protein kinase of the same subcellular fraction. The concentration of this component in brown fat decreased with the age of the animals. A boiled crude microsomal preparation from rat liver was also phosphorylated by brown fat protein kinase. The GTP-linked phosphorylation of the endogenous heat-stable protein was not stimulated by ATP (in contrast to phosphorylation of histone). The maximum velocity of phosphorylation achieved with GTP was about 2.5 times higher than that with ATP as nucleotide substrate. This difference was not due to ATPase activity in the assay. With histone as the protein acceptor both activities were the same. The affinity of protein kinase(s) for ATP was lower with the endogenous heat-stable brown-fat protein and with boiled microsomes (Km of 0.21 mM and 0.17 mM, respectively) than with histone (Km of 0.05 M). No detecable ATPase activity was present in either acceptor protein. It is concluded that the 100 000 × g supernatant fraction from brown fat of infant rats contains two protein kinase activities. One preferentially uses ATP and histone as substrates and the other uses endogenous heat-stable soluble proteins and either ATP or GTP.  相似文献   

7.
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts.  相似文献   

8.
A calcium-regulated protein kinase (CRPK) associated with the plasma membrane of beet root cells was purified by deoxycholate extraction of plasma membrane proteins followed by chromatography in DEAE- and phenyl-Sepharose columns. This procedure rendered a purified CRPK preparation with a specific activity higher than 2.2 μmol mg-1min-1 using histone III-S as substrate. The molecular mass of CRPK, estimated by SDS-PAGE, was 58 kDa. Gel filtration and glycerol gradient centrifugation indicated that the native enzyme is a monomer. Phosphorylation of histone by CRPK displayed a broad pH optimum between 7.0 and 8.2, Syntide-2, a CaM-kinase II substrate, was phosphorylated much more efficiently than kemptide, Ac-MBP (4–14), CKII substrate or poly-(Glu, Tyr) 4:1. The kinetics of this enzyme can be described by a steady-state ordered mechanism in which four bound Ca2+ ions are required for the phosphorylation of the peptide substrate. After Ca2+ binding, the affinity of the enzyme for ATP was not affected while that for syntide-2 or histone decreased. Curves of kinase activity vs ATP at different syntide-2 concentrations indicated that the Km values for ATP or syntide-2 increased with increasing cosubstrate concentrations. Similar curves of kinase activity vs ATP at different histone concentrations indicated that the apparent affinities of CRPK for ATP or histone were not affected by the cosubstrate concentration. The purified CRPK was not recognized by antibodies against soybean or Arabidopsis calcium-dependent protein kinase (CDPK). These results suggest that CRPK and CDPKs could be different enzymes, although they show some similar properties.  相似文献   

9.
A cDNA clone, encoding calcium (Ca2+)-dependent protein kinase (CDPK or CPK), was isolated from tobacco (Nicotiana tabacum). The full-length cDNA of 2360 bp contains an open reading frame for NtCPK4 consisting of 572 amino acid residues. Sequence alignment indicated that NtCPK4 shared high similarities with other CPKs and some CPK-related protein kinases (CRKs). Biochemical analyses showed that NtCPK4 phosphorylated itself and calf thymus histones fraction III-S (histone III-S) in a calcium-dependent manner, and the K0.5 of calcium activation was 0.29 microM or 0.25 microM with histone III-S or syntide-2 as substrates, respectively. The Vmax and Km were 588 nmol min-1 mg-1 and 176 microg ml-1, respectively, when histone III-S was used as substrate, while they were 2415 nmol min-1 mg-1 and 58 microM, respectively, with syntide-2 as substrate. In addition, the phosphorylation of NtCPK4 occurred on threonine residue, as shown by capillary electrophoresis analyses. All of these data demonstrated that NtCPK4 was a serine/threonine protein kinase. NtCPK4 as a low copy gene was expressed in all tested organs including the root, leaf, stem, and flower of tobacco, while its expression was temporally and spatially modulated in both productive and vegetative tissues during tobacco growth and development. NtCPK4 expression was also increased in response to the treatment of gibberellin or NaCl. Our study suggested that NtCPK4 might play vital roles in plant development and responses to environmental stimuli.  相似文献   

10.
Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPKα cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.  相似文献   

11.
Cytoplasmic streaming in the characean algae is inhibited by micromolar rises in the level of cytosolic free Ca2+, but both the mechanism of action and the molecular components involved in this process are unknown. We have used monoclonal antibodies against soybean Ca2+-dependent protein kinase (CDPK), a kinase that is activated by micromolar Ca2+ and co-localizes with actin filaments in higher-plant cells (Putnam-Evans et al., 1989, Cell Motil. Cytoskel.12, 12–22) to identify and localize its characean homologue. Immunoblot analysis revealed that CDPK inChara corralina Klein ex. Wild shares the same relative molecular mass (51–55 kDa) as the kinase purified from soybean, and after electrophoresis in denaturing gels is capable of phosphorylating histone III-S in a Ca2+-dependent manner. Immunofluorescence microscopy localized CDPK inChara to the subcortical actin bundles and the surface of small organelles and other membrane components of the streaming endoplasm. The endoplasmic sites carrying CDPK were extracted from internodal cells by vacuolar perfusion with 1 mM ATP or 10–4 M Ca2+. Both the localization of CDPK and its extraction from internodal cells by perfusion with ATP or high Ca2+ are properties similar to that reported for the heavy chain of myosin inChara (Grolig et al., 1988, Eur. J. Cell Biol.47, 22–31). Based on its endoplasmic location and inferred enzymatic properties, we suggest that CDPK may be a putative element of the signal-transduction pathway that mediates the rapid Ca2+-induced inhibition of streaming that occurs in the characean algae.Abbreviations CDPK calcium-dependent protein kinase - kDa kilodalton - mAb monoclonal antibody - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank Dr. Richard Williamson (Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University) for valuable discussions during the course of this research. This work was supported by funds from a Queen Elizabeth II Fellowship awarded to D.W.McC. and U.S. Department of Agriculture (88-37261-4199) and National Research Inititive Competitive Grants Program (91-37304-6654) grants to A.C.H.  相似文献   

12.
A soluble Ca(2+)-dependent protein kinase (CDPK) was isolated from seedlings of the short-day plant Pharbitis nil and purified to homogeneity. Activity of Pharbitis nil CDPK (PnCDPK) was strictly dependent on the presence of Ca(2+) (K(0,5)=4,9 microM). The enzyme was autophosphorylated on serine and threonine residues and phosphorylated a wide diversity of substrates only on serine residues. Histone III-S and syntide-2 were the best phosphate acceptors (K(m) for histone III-S=0,178 mg ml(-1)). Polyclonal antibodies directed to a regulatory region of the soybean CDPK recognized 54 and 62 kDa polypeptides from Pharbitis nil. However, only 54 kDa protein was able to catalyse autophosphorylation and phosphorylation of substrates in a Ca(2+)-dependent manner. CDPK autophosphorylation was high in 5-day-old Pharbitis nil seedlings grown under non-inductive continuous white light and was reduced to one-half of its original when plants were grown in the long inductive night. Also, the pattern of proteins phosphorylation has changed. After 16-h-long inductive night phosphorylation of endogenous target (specific band of 82 kDa) increased in the presence of calcium ions. It may suggest that Ca(2+)-dependent protein kinase is involved in this process and it is dependent on light/dark conditions.  相似文献   

13.
《Plant science》1988,58(2):135-144
A calcium-dependent protein kinase (CDPK) was purified to 1400-fold from the soluble fraction of alfalfa (Medicago varia) cells by ammonium sulfate fractionation, Sephacryl-300, DEAE-Sephacel, Phenyl-Sepharose and Hydroxylapatite column chromatography. The enzyme is mainly monomeric. During the course of the purification steps a 50 kDa phosphoprotein doublet and a 56 kDa phosphoprotein copurified with the CDPK activity. Mobility shift of these proteins have been shown by SDS PAGE in Ca2+ free conditions. Tests on enzyme activity after separation by native gel electrophoresis revealed two protein kinase activities in our enzyme preparation and the phosphorylation of the 50 kDa and 56 kDa proteins. We suggest that these proteins are the autophosphorylated forms of calcium dependent protein kinases. Preincubation of the CDPK in ATP resulted in a marked increase in enzyme activity, but did not alter the Ca2+ sensitivity of the protein kinase.  相似文献   

14.
15.
Soll J 《Plant physiology》1988,87(4):898-903
An ATP-dependent protein kinase was partially purified from isolated outer envelope membranes of pea (Pisum sativum L., Progress No. 9) chloroplasts. The purified kinase had a molecular weight of 70 kilodaltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was of the cyclic nucleotide and Ca2+, calmodulin-independent type. The purification involved the detergent solubilization of purified outer envelopes by 0.5% cholate and 1% octylglycoside, followed by centrifugation on a linear 6 to 25% sucrose gradient. Active enzyme fractions were further purified by affinity chromatography on histone III-S Sepharose 4B and ion exchange chromatography on diethylaminoethyl cellulose. The protein kinase eluted at 100 millimolar and 50 millimolar NaCl, respectively. The protein kinase was essentially pure as judged by Western blot analysis. The enzyme has a KM of 450 micromolar for ATP and a Vmax of 25 picomoles of 32P incorporated into histone III-S per minute per microgram. Inhibition by ADP is competitive (Ki 150 micromolar).  相似文献   

16.
In plants, calcium-dependent protein kinases (CPKs) constitute a unique family of enzymes consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. We isolated two cDNAs encoding calcium-dependent protein kinase isoforms (CaCPK1 and CaCPK2) from chickpea. Both isoforms were expressed as fusion proteins in Escherichia coli. Biochemical analyses have identified CaCPK1 and CaCPK2 as Ca(2+)-dependent protein kinases since both enzymes phosphorylated themselves and histone III-S as substrate only in the presence of Ca(2+). The kinase activity of the recombinant enzymes was calmodulin independent and sensitive to CaM antagonists W7 [N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazoilum. Phosphoamino acid analysis revealed that the isoforms transferred the gamma-phosphate of ATP only to serine residues of histone III-S and their autophosphorylation occurred on serine and threonine residues. These two isoforms showed considerable variations with respect to their biochemical and kinetic properties including Ca(2+) sensitivities. The recombinant CaCPK1 has a pH and temperature optimum of pH 6.8-8.6 and 35-42 degrees C, respectively, whereas CaCPK2 has a pH and temperature optimum of pH 7.2-9 and 35-42 degrees C, respectively. Taken together, our results suggest that CaCPK1 and CaCPK2 are functional serine/threonine kinases and may play different roles in Ca(2+)-mediated signaling in chickpea plants.  相似文献   

17.
A protein kinase was isolated from spinach thylakoid membranes by solubilization with octyl glucoside and cholate. The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, and sucrose density centrifugation, followed by affinity chromatography on either Affi-Gel blue (yielding denatured enzyme) or on histone cross-linked to Sepharose (yielding active enzyme). Electrophoresis on denaturing polyacrylamide gels, followed by staining with silver, revealed the kinase as a single band corresponding to an apparent molecular mass of 64 kDa. The active enzyme underwent autophosphorylation and could be detected by autoradiography following incubation with [gamma-32P]ATP and Mg2+ ion. The specific phosphotransferase activity of purified kinase was approximately 30 nmol of phosphate min-1 (mg protein)-1 with lysine-rich histone (III-S or V-S) as substrate; casein was phosphorylated at approximately 30% of this rate. The physiological substrate for the kinase is presumed to be light-harvesting chlorophyll a/b protein complex. In solubilized form, this was phosphorylated at approximately 10% of the rate observed with histone III-S as substrate, or 10-100 times slower than the estimated rate of phosphorylation of the light-harvesting complex in situ. Possible reasons for this shortfall are considered. The kinase is proposed as the principal effector of thylakoid protein phosphorylation and associated State transition phenomena.  相似文献   

18.
Summary Ca2+-dependent protein kinase (CDPK) has been proposed to mediate inhibition by Ca2+ of cytoplasmic streaming in the green algaChara. We have identified the in vivo substrate(s) of CDPK inChara by using vacuolar perfusion of individual internodal cells with [-32P]ATP. Phosphorylation of several polypeptides is enhanced when perfusions are performed at 10–4M free Ca2+ compared to <10–9M free Ca2+. The Ca2+-stimulated phosphorylation of these proteins is inhibited by the presence of a monoclonal antibody to soybean CDPK. One of these proteins is 16 to 18kDa and is recognized by an antibody against gizzard myosin light chains. These results demonstrate that inChara, several polypeptides are phophorylated by CDPK and one of these proteins has been tentatively identified as a myosin light chain. These observations support the hypothesis that Ca2+-regulated phosphorylation of myosin is involved in the regulation of cytoplasmic streaming.Abbreviations CDPK calcium-dependent protein kinase - mAb monoclonal antibody  相似文献   

19.
In the Cf-9/Avr9 gene-for-gene interaction, the Cf-9 resistance gene from tomato confers resistance to the fungal pathogen Cladosporium fulvum, which expresses the corresponding pathogen-derived avirulence product Avr9. To understand R gene function and dissect the signaling mechanisms involved in the induction of plant defenses, we studied Cf-9/Avr9-dependent activation of protein kinases in transgenic Cf9 tobacco cell cultures. Using a modified in-gel kinase assay with histone as substrate, we identified a membrane-bound, calcium-dependent protein kinase (CDPK) that showed a shift in electrophoretic mobility from 68 to 70 kD within 5 min after Avr9 elicitor was added. This transition from the nonelicited to the elicited CDPK form was caused by a phosphorylation event and was verified when antibodies to CDPK were used for protein gel blot analysis. In addition, the interconversion of the corresponding CDPK forms could be induced in vitro in both directions by treatment with either phosphatase or ATP. In vitro protein kinase activity toward syntide-2 or histone with membrane extracts or gel-purified enzyme was dependent on Ca(2)+ content and was compromised by the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) but not by its inactive isoform N-(6-aminohexyl)-1-naphthalenesulfonamide. In these assays, the CDPK activity in elicited samples, reflecting predominantly the phosphorylated 70-kD CDPK form, was greater than in nonelicited samples. Thus, Avr9/Cf-9-dependent phosphorylation and subsequent transition from the nonelicited to the elicited form correlate with the activation of a CDPK isoform after in vivo stimulation. Because that transition was not inhibited by W-7, the in vivo CDPK activation probably is not the result of autophosphorylation. Studies with pharmacological inhibitors indicated that the identified CDPK is independent of or is located upstream from a signaling pathway that is required for the Avr9-induced active oxygen species.  相似文献   

20.
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号