首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.  相似文献   

2.
The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV–Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.  相似文献   

3.
Biofilm-forming marine bacterium Paenibacillus lautus NE3B01 was isolated from a mangrove ecosystem, Odisha, India. This isolate formed a swarming type of colony pattern on the solid culture medium with 0.5–2 % agar. Phase contrast microscopy study of a growing colony of P. lautus on solid media and swarming pattern revealed the existence of two phenotypically distinct cells (i.e. cocci and rods) across the colonies. However, in actively growing planktonic culture, only rod-shaped cells were observed. Biofilm growth studies (crystal violet assay) with the isolate showed significant biofilm formation by 6 h, and the detachment phase was observed after 18 h. Biofilm parameters (such as total biomass, roughness coefficient, biofilm thickness, etc.) of 24-h-old P. lautus biofilm were studied by confocal scanning laser microscopy (CSLM). The CSLM study showed that P. lautus formed a biofilm with an average thickness of 14.8 ± 2.6 μm, a high roughness coefficient (0.379 ± 0.103) and surface to bio-volume ratio (4.59 ± 1.12 μm2/μm3), indicating a highly uneven topography of the biofilm. This also indicates that the 24-h-old biofilm is in dispersal phase. Scanning electron microphotographs of P. lautus also supported the existence of two distinct phenotypes of P. lautus. The current findings suggest that P. lautus has two vegetative phenotypes and to decongest the overcrowded biofilm the bacterium can switch over to motile rods from nonmotile cocci and vice versa.  相似文献   

4.
In drug development, access to drug metabolites is essential for assessment of toxicity and pharmacokinetic studies. Metabolites are usually acquired via chemical synthesis, although biological production is potentially more efficient with fewer waste management issues. A significant problem with the biological approach is the effective half-life of the biocatalyst, which can be resolved by immobilisation. The fungus Cunninghamella elegans is well established as a model of mammalian metabolism, although it has not yet been used to produce metabolites on a large scale. Here, we describe immobilisation of C. elegans as a biofilm, which can transform drugs to important human metabolites. The biofilm was cultivated on hydrophilic microtiter plates and in shake flasks containing a steel spring in contact with the glass. Fluorescence and confocal scanning laser microscopy revealed that the biofilm was composed of a dense network of hyphae, and biochemical analysis demonstrated that the matrix was predominantly polysaccharide. The medium composition was crucial for both biofilm formation and biotransformation of flurbiprofen. In shake flasks, the biofilm transformed 86 % of the flurbiprofen added to hydroxylated metabolites within 24 h, which was slightly more than planktonic cultures (76 %). The biofilm had a longer effective lifetime than the planktonic cells, which underwent lysis after 2?×?72 h cycles, and diluting the Sabouraud dextrose broth enabled the thickness of the biofilm to be controlled while retaining transformation efficiency. Thus, C. elegans biofilm has the potential to be applied as a robust biocatalyst for the production of human drug metabolites required for drug development.  相似文献   

5.
Gold nanoparticles have enormous applications in cancer treatment, drug delivery and nanobiosensor due to their biocompatibility. Biological route of synthesis of metal nanoparticles are cost effective and eco-friendly. Acinetobacter sp. SW 30 isolated from activated sewage sludge produced cell bound as well as intracellular gold nanoparticles when challenged with HAuCl4 salt solution. We first time report the optimization of various physiological parameters such as age of culture, cell density and physicochemical parameters viz HAuCl4 concentration, temperature and pH which influence the synthesis of gold nanoparticles. Gold nanoparticles thus produced were characterized by various analytical techniques viz. UV–Visible spectroscopy, X-ray diffraction, cyclic voltammetry, transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and dynamic light scattering. Polyhedral gold nanoparticles of size 20 ± 10 nm were synthesized by 24 h grown culture of cell density 2.4 × 109 cfu/ml at 50 °C and pH 9 in 0.5 mM HAuCl4. It was found that most of the gold nanoparticles were released into solution from bacterial cell surface of Acinetobacter sp. at pH 9 and 50 °C.  相似文献   

6.
Many methods of synthesizing silver nanoparticles (Ag-NPs) by reducing Ag+ ions using aqueous/organic extracts of various plants have been reported in the past, but the methods are rather slow. In this investigation, silver nanoparticles were quickly synthesized from aqueous silver nitrate through a simple method using leaf extract of a plant—Cynodon dactylon which served as reducing agent, while sunlight acted as a catalyst. The formation of Ag-NPs was indicated by gradual change in colour and pH and confirmed by ultraviolet–visible spectroscopy. The Ag-NPs showed a surface plasmon resonance at 451 nm. Based on the decrease in pH, a possible mechanism of the synthesis of Ag-NPs involving hydroxyl (OH?) ions of polyphenols of the leaf extract is postulated. Ag-NPs having (111) and (200) crystal lattices were confirmed by X-ray diffraction. Scanning electron microscopy revealed the spherical nature of the Ag-NPs, while transmission electron microscopy showed that the nanoparticles were polydispersed with a size range of 8–10 nm. The synthesized Ag-NPs also demonstrated their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhimurium.  相似文献   

7.
Biofilms of selected bacteria strains were previously used on metal coupons as a protective layer against microbiologically influenced corrosion of metals. Unlike metal surfaces, concrete surfaces present a hostile environment for growing a protective biofilm. The main objective of this research was to investigate whether a beneficial biofilm can be successfully grown on mortar surfaces. Escherichia coli DH5α biofilm was grown on mortar surfaces for 8 days, and the structure and characteristics of the biofilm were studied using advanced microscopy techniques such as scanning electron microscopy and confocal laser scanning microscopy in combination with fluorescence in situ hybridization, live/dead, extracellular polymer staining, ATP analysis, and membrane filtration. A biofilm layer with a varying thickness of 20–40 μm was observed on the mortar surface. The distribution of live and dead bacteria and extracellular polymers varied with depth. The density of the live population near the mortar surface was the lowest. The bacteria reached their highest density at three fourths of the biofilm depth and then decreased again near the biofilm–liquid interface. Overall, the results indicated a healthy biofilm growth in the chosen growth period of 8 days, and it is expected that longer growth periods would lead to formation of a more resistant biofilm with more coverage of mortar surfaces.  相似文献   

8.
In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV–Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.  相似文献   

9.
Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l?1 sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0–53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing.  相似文献   

10.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

11.
Due to the increasing popularity of using plant extract in the synthesis of nanoparticles, this study presented the synthesis of platinum nanoparticles using Fumariae herba extract. The formation of platinum nanoparticles was confirmed by UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with EDS profile. Transmission electron micrograph presented the hexagonal and pentagonal shape of the synthesized nanoparticles sized about 30 nm. Moreover, platinum nanoparticles presented good catalytic properties in the reduction of methylene blue and crystal violet.  相似文献   

12.
Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determine whether these structures, which were suggested to be encoded by the Rv3312A (mtp) gene, have a similar role in Mycobacterium tuberculosis, we generated a Δmtp mutant and a mtp-complemented strain of a clinical isolate of M. tuberculosis and analyzed these strains for their ability to produce pili in comparison to the wild-type strain. Phenotypic analysis by transmission electron microscopy proved the essentiality of mtp for piliation in M. tuberculosis. We then compared biofilm formation of the derived strains in detergent-free Sauton’s media. Biofilm mass was quantified spectrophotometrically using crystal violet. Furthermore, we examined mtp gene expression by quantitative real-time PCR in wild-type cells grown under biofilm versus planktonic growth conditions. We found a 68.4 % reduction in biofilm mass in the mutant compared to the wild-type strain (P = 0.002). Complementation of the mutant resulted in a restoration of the wild-type biofilm phenotype (P = 0.022). We, however, found no significant difference between mtp expression in cells of the biofilm to those growing planktonically. Our findings highlight a crucial, but non-specific, role of pili in the biofilm lifestyle of M. tuberculosis and indicate that they may represent an important target for the development of therapeutics to attenuate biofilm formation, thereby potentially reducing persistence.  相似文献   

13.
This study described a simple and green approach for the synthesis of silver nanoparticles (AgNPs) employing benzoin gum water extract as a reducing and capping agent and their applications. The AgNPs were characterized by ultraviolet–visible spectrophotometer, X-ray diffraction pattern, field emission transmission electron microscopy, dynamic light scattering, zeta potential and fourier transform infrared spectroscopy. The AgNPs showed promising antimicrobial activity against various pathogens (Gram-negative, Gram-positive and fungus) and possessed high free radical scavenging activity (104.5 ± 7.21 % at 1 mg/ml). In addition, the AgNPs exhibited strong cytotoxicity towards human cervical cancer and human lung cancer cells as compared to the normal mouse macrophage cells. Moreover, the AgNPs possessed anti-biofilm activity against Escherichia coli, and compatibility to human keratinocyte HaCaT cells, which suggests the use of dressing with the AgNPs in chronic wound treatment. Therefore, AgNPs synthesized by benzoin gum extract are comparatively green and may have broad spectrum potential application in biomedicine.  相似文献   

14.
Pseudomonas aeruginosa motility, virulence factors and biofilms are known to be detrimental to wound healing. The efficacy of negative pressure wound therapy (NPWT) against P. aeruginosa has been little studied, either in vitro or in vivo. The present study evaluated the effect of negative pressure (NP) on P. aeruginosa motility in vitro, and the effect of NPWT on virulence factors and biofilms in vivo. P. aeruginosa motility was quantified under different levels of NP (atmospheric pressure, ? 75, ? 125, ? 200 mmHg) using an in vitro model. Swimming, swarming and twitching motility were significantly inhibited by NP (? 125 and ? 200 mmHg) compared with atmospheric pressure (p = 0.05). Virulence factors and biofilm components were quantified in NPWT and gauze treated groups using a rabbit ear biofilm model. Biofilm structure was studied with fluorescence microscopy and scanning electron microscopy. Additionally, viable bacterial counts and histological wound healing parameters were measured. Compared with the control, NPWT treatment resulted in a significant reduction in expression of all virulence factors assayed including exotoxin A, rhamnolipid and elastase (p = 0.01). A significant reduction of biofilm components (eDNA) (p = 0.01) was also observed in the NPWT group. The reduction of biofilm matrix was verified by fluorescence- and scanning electron-microscopy. NPWT lead to better histologic parameters (p = 0.01) and decreased bacterial counts (p = 0.05) compared with the control. NPWT treatment was demonstrated to be an effective strategy to reduce virulence factors and biofilm components, which may explain the increased wound healing observed.  相似文献   

15.
Ginkgo biloba has long been used in traditional Chinese medicine. In this study, ginkgoneolic acid, a kind of compound extracted from G. biloba, was investigated for its effects on growth, acid production, adherence, biofilm formation, and biofilm morphology of Streptococcus mutans. The results showed that ginkgoneolic acid inhibited not only the growth of S. mutans planktonic cells at minimum inhibitory concentration (MIC) of 4 μg/mL and minimum bactericidal concentration (MBC) of 8 μg/mL but also the acid production and adherence to saliva-coated hydroxyapatite of S. mutans at sub-MIC concentration. In addition, this agent was effective in inhibiting the biofilm formation of S. mutans (MBIC50?=?4 μg/mL), and it reduced 1-day-developed biofilm of S. mutans by 50 % or more at low concentration (MBRC50?=?32 μg/mL). Furthermore, the present study demonstrated that ginkgoneolic acid disrupted biofilm integrity effectively. These findings suggest that ginkgoneolic acid is a natural anticariogenic agent in that it exhibits antimicrobial activity against S. mutans and suppresses the specific virulence factors associated with its cariogenicity.  相似文献   

16.
The development of new polymeric materials aimed to control the bacterial biofilm appears to be an important practical approach. The goal of the present study was to prepare and characterize poly(ethylene-co-vinyl acetate) copolymer (EVA) films containing citronellol, eugenol, and linalool and evaluate their efficiency on growth and biofilm formation of Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa in monospecies and dual species. The results showed that the addition of oil components influenced the elastic modulus (15 % decrease), the tensile stress (30 % decrease), the elongation at break (10 % increase), and the contact angle values (10–20° decrease) while leaving the homogeneity of the surface unaltered. Among the polymeric films, EVA + citronellol and EVA + eugenol at 7 wt% had the best inhibitory effect. After 24–48 h of incubation, EVA + citronellol was more effective against the growth (30–60 % reduction) than EVA + eugenol (15–30 % inhibition). However, this inhibition decreased after 240 h of incubation. On the contrary, the biofilm evaluation revealed a strong inhibition trend also after prolonged incubation time: the amount of biomass per square centimeter formed on copolymer with oil components was significantly less (40–70 % decrease) than that on pure copolymer control for L. monocytogenes, S. aureus, and E. coli. When polymeric materials were simultaneously inoculated with combinations of S. aureus and E. coli, the biomass accumulated was higher for EVA + citronellol and lower for EVA + eugenol than that in monoculture biofilm. The findings were similar to the results obtained by 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assay that measures the metabolic activity of viable cells.  相似文献   

17.
Combination of statistical optimization and mutagenesis to isolate hypersecretory strains is studied to maximize phytase production from Aspergillus niger NCIM 563 under submerged fermentation. The overall results obtained show a remarkable 5.98-fold improvement in phytase production rates when compared to that using basal medium. Optimization of culture conditions from parent strain is studied first by the Plackett–Burman technique to evaluate the effects of 11 variables for phytase production. The results showed that glucose, MgSO4, KCl, incubation period, and MnSO4 are the most significant variables affecting enzyme production. Further optimization in these variables, using a central composite design technique, resulted in 3.74-fold increase in the yield of phytase production to 254,500 U/l when compared with the activity observed with basal media (68,000 U/l) in shake flask. Our experiments show that the phytase from A. niger NCIM 563 exhibits desirable activity in simulated gastric fluid conditions with low pH and also improved thermostability when compared to commercial phytase. The improved yield demonstrates the potential applicability of phytase enzyme as a source of phytase supplement for phosphorus nutrition and environmental protection in animal feed industry. Physical and chemical mutagenesis experiments were carried out in parallel to isolate hypersecretory mutants that could possibly further enhance the enzyme production. Using optimized media conditions of the parent strain, our results show that mutant strain A. niger NCIM 1359 increased the phytase activity by another 1.6-fold to 407,200 U/l.  相似文献   

18.
Listeria monocytogenes is a food-borne pathogen which causes listeriosis and is difficult to eradicate from seafood processing environments; therefore, more effective control methods need to be developed. This study investigated the effectiveness of three bacteriophages (LiMN4L, LiMN4p and LiMN17), individually or as a three-phage cocktail at ≈9 log10 PFU/ml, in the lysis of three seafood-borne L. monocytogenes strains (19CO9, 19DO3 and 19EO3) adhered to a fish broth layer on stainless steel coupon (FBSSC) and clean stainless steel coupon (SSC), in 7-day biofilm, and dislodged biofilm cells at 15 ± 1 °C. Single phage treatments (LiMN4L, LiMN4p or LiMN17) decreased bacterial cells adhered to FBSSC and SSC by ≈3–4.5 log units. Phage cocktail reduced the cells on both surfaces (≈3.8–4.5 and 4.6–5.4 log10 CFU/cm2, respectively), to less than detectable levels after ≈75 min (detection limit = 0.9 log10 CFU/cm2). The phage cocktail at ≈5.8, 6.5 and 7.5 log10 PFU/cm2 eliminated Listeria contamination (≈1.5–1.7 log10 CFU/cm2) on SSC in ≈15 min. One-hour phage treatments (LiMN4p, LiMN4L and cocktail) in three consecutive applications resulted in a decrease of 7-day L. monocytogenes biofilms (≈4 log10 CFU/cm2) by ≈2–3 log units. Single phage treatments reduced dislodged biofilm cells of each L. monocytogenes strain by ≈5 log10 CFU/ml in 1 h. The three phages were effective in controlling L. monocytogenes on stainless steel either clean or soiled with fish proteins which is likely to occur in seafood processing environments. Phages were more effective on biofilm cells dislodged from the surface compared with undisturbed biofilm cells. Therefore, for short-term phage treatments of biofilm it should be considered that some disruption of the biofilm cells from the surface prior to phage application will be required.  相似文献   

19.
Biomediated silver nanoparticle were synthesized using a cell free extract of a soil bacterium, Exiguobacterium mexicanum PR 10.6. The silver nanoparticles were characterised using UV–Vis spectroscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles ranged from 5 to 40 nm. Extracellular polymeric substance played a critical role in the reduction of silver ion and nanoparticle stabilisation when using the cell free extract. The synthesis using E. mexicanum is an effective eco-friendly, rapid method for silver nanoparticle synthesis within 1 h.  相似文献   

20.
Silver nanoparticles (AgNPs) have gained great interest in nanotechnology, biotechnology and medicine. The green synthesis of nanoparticles has received an increasing attention because of it’s maximize efficiency and minimize health and environmental hazards as compared to other conventional chemical synthesis. In this study, we reported biosynthesis of AgNPs by aqueous Annona squamosa L. leaf extract and its characterization by UV-visible spectroscopy (UV–vis), Field emission gun scanning electron microscopy (FEG-SEM), X-ray energy dispersive spectroscopy (EDX), Transmission electron microscopy (TEM), Selected-area electron diffraction (SAED) and Fourier transform infra-red spectroscopy (FTIR). The results indicated that AgNPs formed were spherical in shape with size ranging from 14 to 40 nm with an average diameter 28.47 nm. Furthermore, it was observed that the AgNPs exhibited an antibacterial activity against different Gram positive and Gram negative microorganisms. Our report confirmed that the ALE is a very good eco-friendly and nontoxic bioreductant for the synthesis of AgNPs and opens up further opportunities for fabrication of antibacterial drugs, medical devices and wound dressings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号