首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We gathered molecular data to assess phylogenetic and phylogeographic patterns for widespread lineages of Neotropical forest falcons in the genus Micrastur to: 1) investigate the comparative phylogeography of four species from the M. ruficollis complex (M. ruficollis, M. gilvicollis, M. plumbeus and M. mintoni), to identify the temporal and spatial context of the group's diversification; and 2) to reevaluate, based on molecular characters, the taxonomic status and interspecific boundaries within this complex. Molecular phylogenies were based on sequences of the mitochondrial genes ND2 and Cyt b and the nuclear genes FIB5 and MUSK from 119 specimens, including M. mirandollei and M. semitorquatus as outgroups. The phylogenetic trees obtained by BI and a Species Tree analysis recovered the monophyly of currently accepted species belonging to the M. ruficollis complex. The dates in our tree indicate that the separation of species within the complex occurred 2–4 million yr ago, initiating during the Neogene (Pliocene). However, when compared to most such widely distributed Neotropical lineages, the diversification within the M. ruficollis complex appears more recent (i.e. centered in the Late Pleistocene). Our results demonstrate the existence of eleven geographic lineages (subclades) in M. ruficollis, M. gilvicollis and M. mintoni, which differ genetically from each other and therefore can be interpreted as distinct evolutionary lineages and possibly separate species under lineage‐based species concepts. However, BPP results failed to recognize with strong statistical support any of these subclades as distinct species. Distinct subclades in the M. ruficollis complex are limited by the principal tributaries of the Amazon River and the Andes, suggesting that these modern barriers limit gene flow and thereby could have promoted differentiation mostly during the Pleistocene. However, our results indicate widely disparate responses to individual barriers across subclades, supporting lineage‐specific histories throughout the Neotropics.  相似文献   

2.
Although Southeast Asia is a global biodiversity hotspot, the tempo and mode of avian diversification there has not been well studied. We investigated the history of the diversification of an endemic Asian tropical bird, the Black-browed Barbet Megalaima oorti , by reconstructing its intraspecific molecular phylogeny with mitochondrial cytochrome- b gene sequences. Our molecular phylogeny suggests that the five subspecies of this montane barbet comprise four deeply divergent clades with strong geographical associations: M. o. oorti in the Malay Peninsula and Sumatra, M. o. annamensis in Vietnam, M. o. nuchalis in Taiwan and M. o. faber / M. o. sini in Hainan and the southeastern Chinese mainland, respectively. Climate changes from the mid-Pliocene to the Pleistocene may have influenced their diversification through repeated contraction and expansion of Asian tropical forest. Moreover, our data indicate that the Black-browed Barbet complex is not monophyletic: M. asiatica is embedded in our phylogeny as the sister taxon to M. o. annamensis . The present taxonomic treatment has combined evolutionarily distinct taxa into a single paraphyletic species. Based on our molecular data and previously published plumage characters, we suggest a revision of traditional M. oorti into four monophyletic species: M. oorti , M. nuchalis , M. annamensis and M. faber .  相似文献   

3.
Phylogenetic analyses were conducted on cytochrome b sequence data of the most geographically and taxonomically broad sampling of Cavia taxa to date. Primary objectives included providing the first extensive molecular phylogenetic framework for the genus, testing the taxonomic and systematic hypotheses of previous authors and providing insight into the evolutionary and biogeographic history of the genus. Support was found for the morphologically defined species C. aperea, C. tschudii, C. magna and C. fulgida and the taxonomic placement of taxa previously subject to conflicting taxonomic opinions (e.g. C. nana, C. anolaimae and C. guianae) was further resolved. Additionally, we elevate the Ecuadorian C. a. patzelti to species status, restrict the distributional limits and suggest taxonomic affiliations of some C. tschudii subspecies, and provide strong evidence for the geographic origin of guinea pig domestication. Finally, we provide an estimated evolutionary timeline for the genus Cavia, which appears to extend well into the late Miocene.  相似文献   

4.
Representatives of theC. pratensis complex were analysed for allozymes, ITS, non-coding cpDNA, and RAPDs to elucidate phylogenetic relationships and the historical biogeography of this species group. Our concepts differ in some important aspects from current ideas. Two diploid species from southeastern Europe form the Basal Group of the complex. A diploid from the Iberian Peninsula represents another old lineage. The phylogenetically younger Derived Group comprises diploid taxa and all known polyploid taxa. The two old lineages represent pleistocene relicts which were not involved in the formation of the Derived Group. All polyploids evolved in postglacial time from diploids of the Derived Group which may have survived the glaciations in refugia centered around and within the Alps. The arctic-circumpolarC. nymanii is of young age and migrated to Scandinavia in postglacial times from south to north.  相似文献   

5.
We surveyed mitochondrial DNA (mtDNA) sequence variation in the subfamily Xenocyprinae from China and used these data to estimate intraspecific, interspecific, and intergeneric phylogeny and assess biogeographic scenarios underlying the geographic structure of lineages. We sequenced 1140 bp of cytochrome b from 30 individuals of Xenocyprinae and one putative outgroup (Myxocypris asiaticus) and also sequenced 297 bp of ND4L, 1380 bp of ND4, 68 bp of tRNA(His), and 69 bp of tRNA(Ser) from 17 individuals of Xenocyprinae and the outgroup (M. asiaticus). We detected high levels of nucleotide variation among populations, species, and genera. The phylogenetic analysis suggested that Distoechodon hupeinensis might be transferred to the genus Xenocypris, the taxonomic status of the genus Plagiognathops might be preserved, and species of Xenocypris and Plagiognathops form a monophyletic group that is sister to the genus Distoechodon and Pseudobrama. The introgressive hybridization might occur among the populations of X. argentea and X. davidi, causing the two species to not be separated by mtDNA patterns according to their species identification, and the process and direction of hybridization are discussed. The spatial distributions of mtDNA lineages among populations of Xenocypris were compatible with the major geographic region, which indicated that the relationship between Hubei + Hunan and Fujian is closer than that between Hubei + Hunan and Sichuan. From a perspective of parasite investigation, our data suggested that the fauna of Hexamita in Xenocyprinae could be used to infer the phylogeny of their hosts.  相似文献   

6.
Our analysis of parts of the mitochondrial ribosomal 12S and 16S genes from 39 populations of Southeast Asian ranid frogs confirms that the fanged frogs are a monophyletic clade. This group, properly called Limnonectes, appears to have arisen in the early Tertiary at a time when free faunal exchange was possible among Southeast Asia, Borneo, Sumatra, Java, and, probably, Sulawesi. Four species groups are tentatively identified within the clade. Part of group 1 includes species related to L. kuhlii that occur in Borneo. Another part of group 1 includes species from Malay Peninsula and Thailand that are related to L. pileata. Species group 2, L. leporina, occurs only in Borneo. Species group 3 is restricted to species distributed in Sulawesi and the Philippines. Species group 4 includes L. blythii and relatives. There is a lack of compatibility between phylogenetic hypotheses generated from molecular and morphological data sets. These differences are related, in large part, to whether some species of Limnonectes have secondarily lost fangs or whether lack of fangs represents the primitive condition.  相似文献   

7.
8.
9.
We present a comprehensively sampled three‐gene phylogeny of the monophyletic Forcipulatacea, one of three major lineages within the crown‐group Asteroidea. We present substantially more Southern Hemisphere and deep‐sea taxa than were sampled in previous molecular studies of this group. Morphologically distinct groups, such as the Brisingida and the Zoroasteridae, are upheld as monophyletic. Brisingida is supported as the derived sister group to the Asteriidae (restricted), rather than as a basal taxon. The Asteriidae is paraphyletic, and is broken up into the Stichasteridae and four primary asteriid clades: (1) a highly diverse boreal clade, containing members from the Arctic and sub‐Arctic in the Northern Hemisphere; (2) the genus Sclerasterias; (3) and (4) two sister clades that contain asteriids from the Antarctic and pantropical regions. The Stichasteridae, which was regarded as a synonym of the Asteriidae, is resurrected by our results, and represents the most diverse Southern Hemisphere forcipulatacean clade (although two deep‐sea stichasterid genera occur in the Northern Hemisphere). The Labidiasteridae is artificial, and should be synonymized into the Heliasteridae. The Pedicellasteridae is paraphyletic, with three separate clades containing pedicellasterid taxa emerging among the basal Forcipulatacea. Fossils and timing estimates from species‐level phylogeographic studies are consistent with prior phylogenetic hypotheses for the Forcipulatacea, suggesting diversification of basal taxa in the early Mesozoic, with some evidence for more widely distributed ranges from Cretacous taxa. Our analysis suggests a hypothesis of an older fauna present in the Antarctic during the Eocene, which was succeeded by a modern Antarctic fauna that is represented by the recently derived Antarctic Asteriidae and other forcipulatacean lineages. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 646–660.  相似文献   

10.
Molecular systematics and the diatom species   总被引:1,自引:0,他引:1  
Alverson AJ 《Protist》2008,159(3):339-353
  相似文献   

11.
We take advantage of the broad distribution of howler monkeys from Mexico to Argentina to provide a historical biogeographical analysis on a regional scale that encompasses the entire Neotropics. The phylogenetic relationships among 9 of the 10 recognized Alouatta species were inferred using three mitochondrial and two nuclear genes. The nuclear gene regions provided no phylogenetic resolution among howler monkey species, and were characterized by very low levels of sequence divergence between Alouatta and the Ateles outgroup. The mtDNA genes, on the other hand, produced a well-resolved phylogeny, which indicated that the earliest split among howler monkeys separated cis- and trans-Andean clades. Eight monophyletic mtDNA haplotype clades were identified, representing six named species in South America, including Alouatta seniculus, Alouatta sara, Alouatta macconelli, Alouatta caraya, Alouatta belzebul, and Alouatta guariba, and two in Mesoamerica, Alouatta pigra and Alouatta palliata. Molecular clock-based estimates of branching times indicated that contemporary howler monkey species originated in the late Miocene and Pliocene, not the Pleistocene. The causes of Alouatta diversification were more difficult to pin down, although we posit that the initial cis-, trans-Andean split in the genus was caused by the late Miocene completion of the northern Andes. Riverine barriers to dispersal and putative forest refuges can neither be discounted nor distinguished as causes of speciation in many cases, and one, the other or both have likely played a role in the diversification of South American howler monkeys. Finally, we estimated the separation of Mesoamerican A. pigra and A. palliata at 3Ma, which corresponds to the completion date of the Panama Isthmus promoting a role for this earth history event in the speciation of Central American howler monkeys.  相似文献   

12.
Burying beetles (Silphidae: Nicrophorus) are well-known for their biparental care and monopolization of small vertebrate carcasses in subterranean crypts. They have been the focus of intense behavioral ecological research since the 1980s yet no thorough phylogenetic estimate for the group exists. The relationships among the species, and the validity of some species, are poorly understood. Here, we infer the relationships and examine species boundaries among 50 individuals representing 15 species, primarily of the investigator species group, using a mixture-model Bayesian analysis. Two mitochondrial genes, COI and COII, were used, providing 2129 aligned nucleotides (567 parsimony-informative). The Akaike Information Criterion and Bayes Factors were used to select the best fitting model, in addition to Reversible Jump MCMC, which accommodated model uncertainty. A 21 parameter, three-partition GTR + G was the final model chosen. Despite a presumed Old World origin for the genus itself, the basal lineages and immediate outgroups of the investigator species group are New World species. Bayesian methods reconstruct the common ancestor of the investigator species group as New World and imply one later transition to the Old World with two return transitions to the New World. Prior hypotheses concerning the questionable validity of four species names, Nicrophorus praedator, Nicrophorus confusus, Nicrophorus encaustus and Nicrophorus mexicanus were tested. No evidence was found for the validity of the Nicrophorus investigator synonym N. praedator. We found evidence rejecting the species status of N. confusus (NEW SYNONYM of Nicrophorus sepultor). Weak evidence was found for the species status of N. encaustus and N. mexicanus, which are tentatively retained as valid. Our results strongly reject a recently published hypothesis that Nicrophorus interruptus (NEW STATUS as valid species) is a subspecies of N. investigator.  相似文献   

13.
We conducted a phylogenetic analysis of Stenodactylus geckos using mitochondrial and three nuclear genes in order to understand the divergence within this genus. Stenodactylus is a complex with deep divergences that date to at least the Miocene; these patterns are seen in several other complexes in this region, indicating important and shared biogeographic processes affecting several taxonomic groups. Divergence between disjunct populations from three species in the Arabian Peninsula may have arisen because of Pliocene and Pleistocene restructuring of sand dunes. As currently recognized, Stenodactylus is not a monophyletic genus with respect to Tropiocolotes. We resurrect the monotypic genus Pseudoceramodactylus to address this problem of monophyly.  相似文献   

14.
The Resedaceae, containing 6 genera and ca. 85 species, are widely distributed in the Old World, with a major center of species diversity in the Mediterranean basin. Phylogenetic analyses of ITS and plastid trnL-trnF sequences of 66 species from all genera of the Resedaceae reveal (1) monophyly of the family, in congruence with preliminary phylogenetic studies; (2) molecular support for the traditional morphological subdivision of the Resedaceae into three tribes according to ovary and placentation types, and carpel number; (3) two monophyletic genera (Caylusea, Sesamoides), and one natural group (core Reseda), which includes the remaining four genera of the family (Ochradenus, Oligomeris, Randonia, Reseda); (4) a monophyletic origin for four of the six taxonomic sections recognized within Reseda (Leucoreseda, Luteola, Glaucoreseda, Phyteuma). Our results lead us to interpret an increment of the basic chromosome number in the family from x=5 to x=6 in at least two independent instances, and a broad representation of polyploids in multiple lineages across phylogenies, including association between octoploids and alien invasion in many parts of the world. Species diversity, endemism number, phylogenetic relationships and sequence divergence in Resedaceae suggest two major centers of differentiation, one in the western Mediterranean, and the other in the eastern Mediterranean and SW Asia. Two independent colonization events to the Canary Islands from Africa are indicated for the two Canarian Reseda endemics.  相似文献   

15.
16.
Through the examination of past and present distributions of plants and animals, historical biogeographers have provided many insights on the dynamics of the massive organismal exchange between North and South America. However, relatively few phylogeographic studies have been attempted in the land bridge of Mesoamerica despite its importance to better understand the evolutionary forces influencing this biodiversity 'hotspot'. Here we use mitochondrial DNA sequence data from fresh samples and formalin-fixed museum specimens to investigate the genetic and biogeographic diversity of the threatened Mesoamerican spiny-tailed lizards of the Ctenosaura quinquecarinata complex. Species boundaries and their phylogeographic patterns are examined to better understand their disjunct distribution. Three monophyletic, allopatric lineages are established using mtDNA phylogenetic and nested clade analyses in (i) northern: México, (ii) central: Guatemala, El Salvador and Honduras, and (iii) southern: Nicaragua and Costa Rica. The average sequence divergence observed between lineages varied between 2.0% and 3.7% indicating that they do not represent a very recent split and the patterns of divergence support the recently established nomenclature of C. quinquecarinata, Ctenosaura flavidorsalis and Ctenosaura oaxacana. Considering the geological history of Mesoamerica and the observed phylogeographic patterns of these lizards, major evolutionary episodes of their radiation in Mesoamerica are postulated and are indicative of the regions' geological complexity. The implications of these findings for the historical biogeography, taxonomy and conservation of these lizards are discussed.  相似文献   

17.
Molecular systematics of citrus-associated Alternaria species   总被引:6,自引:0,他引:6  
The causal agents of Alternaria brown spot of tangerines and tangerine hybrids, Alternaria leaf spot of rough lemon and Alternaria black rot of citrus historically have been referred to as Alternaria citri or A. alternata. Ten species of Alternaria recently were described among a set of isolates from leaf lesions on rough lemon (Citrus jambhiri) and tangelo (C. paradisi × C. reticulata), and none of these isolates was considered representative of A. alternata or A. citri. To test the hypothesis that these newly described morphological species are congruent with phylogenetic species, selected Alternaria brown spot and leaf spot isolates, citrus black rot isolates (post-harvest pathogens), isolates associated with healthy citrus tissue and reference species of Alternaria from noncitrus hosts were scored for sequence variation at five genomic regions and used to estimate phylogenies. These data included 432 bp from the 5' end of the mitochondrial ribosomal large subunit (mtLSU), 365 bp from the 5' end of the beta-tubulin gene, 464 bp of an endopolygalacturonase gene (endoPG) and 559 and 571 bp, respectively, of two anonymous genomic regions (OPA1-3 and OPA2-1). The mtLSU and beta-tubulin phylogenies clearly differentiated A. limicola, a large-spored species causing leaf spot of Mexican lime, from the small-spored isolates associated with citrus but were insufficiently variable to resolve evolutionary relationships among the small-spored isolates from citrus and other hosts. Sequence analysis of translation elongation factor alpha, calmodulin, actin, chitin synthase and 1, 3, 8-trihydroxynaphthalene reductase genes similarly failed to uncover significant variation among the small-spored isolates. Phylogenies estimated independently from endoPG, OPA1-3 and OPA2-1 data were congruent, and analysis of the combined data from these regions revealed nine clades, eight of which contained small-spored, citrus-associated isolates. Lineages inferred from analysis of the combined dataset were in general agreement with described morphospecies, however, three clades contained more than one morphological species and one morphospecies (A. citrimacularis) was polyphyletic. Citrus black rot isolates also were found to be members of more than a single lineage. The number of morphospecies associated with citrus exceeded that which could be supported under a phylogenetic species concept, and isolates in only five of nine phylogenetic lineages consistently were correlated with a specific host, disease or ecological niche on citrus. We advocate collapsing all small-spored, citrus-associated isolates of Alternaria into a single phylogenetic species, A. alternata.  相似文献   

18.
Inferring the evolutionary and biogeographic history of taxa occurring in a particular region is one way to determine the processes by which the biodiversity of that region originated. Tree boas of the genus Corallus are an ancient clade and occur throughout Central and South America and the Lesser Antilles, making it an excellent group for investigating Neotropical biogeography. Using sequenced portions of two mitochondrial and three nuclear loci for individuals of all recognized species of Corallus, we infer phylogenetic relationships, present the first molecular analysis of the phylogenetic placement of the enigmatic C. cropanii, develop a time-calibrated phylogeny, and explore the biogeographic history of the genus. We found that Corallus diversified within mainland South America, via over-water dispersals to the Lesser Antilles and Central America, and via the traditionally recognized Panamanian land bridge. Divergence time estimates reject the South American Caribbean-Track as a general biogeographic model for Corallus and implicate a role for events during the Oligocene and Miocene in diversification such as marine incursions and the uplift of the Andes. Our findings also suggest that recognition of the island endemic species, C. grenadensis and C. cookii, is questionable as they are nested within the widely distributed species, C. hortulanus. Our results highlight the importance of using widespread taxa when forming and testing biogeographic hypotheses in complex regions and further illustrate the difficulty of forming broadly applicable hypotheses regarding patterns of diversification in the Neotropical region.  相似文献   

19.
The complete mitochondrial ND2 gene (1037 bp) was sequenced to examine relationships within the bent-wing bat complex, Miniopterus schreibersii (Family Vespertilionidae). It was found that M. schreibersii is a paraphyletic assemblage comprising several species. Two major lineages were identified, one of which was restricted to the Palearctic-Ethiopian regions and the other to the Oriental-Australasian regions. This pattern of differentiation was mirrored by the genus as a whole. Speciation and differentiation within the genus Miniopterus appears to have a hierarchical geographical pattern. The earliest divergence corresponds to the Ethiopian-Palearctic and the Oriental-Australasian biogeographical zones. This early divergence is then followed by radiations within each of the Ethiopian, Oriental and Australasian regions. The study also revealed that the number of species currently recognized (11 or 13) is a gross underestimate of the number of actual species. The emerging picture is one of a relatively speciose genus with most species having relatively restricted distributions; few, if any, occur in more than one biogeographical region.  相似文献   

20.
Littorella (Plantaginaceae) is a disjunct, amphibious genus represented by three closely related species. Littorella uniflora occurs in Europe including Iceland and the Azores, L. americana is found in temperate North America, and L. australis grows in temperate South America. Littorella has been recognized in numerous floristic treatments, but its status as a genus has recently been questioned. Rahn (Botanical Journal of the Linnean Society 120: 145-198, 1996) proposed a new phylogeny for Plantaginaceae based on morphological, embryological, and chemical data in which he reduced Littorella to a subgenus of Plantago. This article compares the phylogeny proposed by Rahn to one based on DNA sequence data from the internal transcribed spacer (ITS) region. In our analysis, Littorella forms a strongly supported monophyletic clade sister to Plantago and its recognition at the generic rank appears warranted. Littorella australis is sister to L. americana, and this clade is sister to the European L. uniflora. This more distant relationship between L. uniflora and L. americana provides support for maintaining both taxa at the specific rank and suggests a European origin for Littorella. Our studies also indicate that the monotypic genus Bougueria is deeply nested within Plantago and that its inclusion within Plantago as proposed by Rahn appears justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号