首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hyaluronan (HA) is expressed by most tissues, including skin. Localization of HA in the skin is assessed by histology with HA-binding protein (HABP) serving as the probe. Reports have suggested that HA expression in skin is altered in a number of diseases. However, interlaboratory variations in HABP staining profiles, even in normal skin, suggest a need to standardize methods and/or identify new probes. We report the staining patterns of a HA-binding peptide (termed "Pep-1") in human and mouse skin. After acetone fixation, Pep-1 stained HA in the intercellular spaces of the epidermis, whereas staining in the dermis was weak and diffuse in both human and mouse skin. HABP staining of the epidermis and dermis were comparable in human skin but failed to stain the vital epidermis of mouse skin. In human skin, Pep-1 stained the basal, spinous, and granular layers, whereas HABP failed to stain the basal layer. Precipitation of HA in situ resulted in dermal staining but weak staining in the epidermis for HABP and Pep-1. Our results may suggest that Pep-1 is sensitive to HA conformation. Furthermore, Pep-1 may represent a new probe to study HA expression in the skin.  相似文献   

3.
Poor skin permeability and stability limits the application of peptides to the skin. Enhanced skin permeation could offer new therapies for a range of dermatological and cosmetic applications. The aim of this study was to investigate the application of a novel magnetic field enhancement technology to peptide delivery across the skin. Ala-Trp was used as a model dipeptide. Stability of the dipeptide in a range of conditions and with exposure to skin was determined. Dermaportation-magnetic field technology increased the in vitro permeability coefficient of Ala-Trp across human epidermis from 7.7 x 10(-4) cm/h with passive diffusion to 1.94 x 10(-2) cm/h with Dermaportation. Ala-Trp was unstable with exposure to human epidermis. Following permeation across the epidermis, a degradation product was detected in the receptor solution with the amount increasing up to 6 h. Given the susceptibility of peptides to degradation in the skin it is essential that they are delivered rapidly across the skin in order to maximize the opportunity for delivery of the native peptide. Dermaportation offers a potential new delivery method for skin delivery of peptides for a range of dermatological and cosmetic applications.  相似文献   

4.
In the present work, we labeled human epidermal keratinocytes and dermal papilla cells in order to study their behavior after intradermal transplantation. The cells were transduced by lentiviral vectors that bore a marker gene that encodes green fluorescent protein (copGFP) or red fluorescent protein (DsRed). A portion of the transgene expressing cells was evaluated by flow cytometry. The proposed genetic constructions have allowed one to achieve high efficiency (>95%) of the transduction of hair follicle cells. The in vitro transduced cells were injected under epidermis of human skin fragments, after which these fragments were transplanted under the skin of immunodeficient mice. The injected epidermal keratinocytes were found mainly in hair follicles and partially in the zone of interfollicular epidermis, while dermal papilla cells were found in the papilla of the derma. The results of the present study have shown that the chosen genetic constructions obtained based on human immunodeficiency lentivirus are capable of the effective and stable transduction of human skin cells. The injected cells survived and were found in the corresponding skin structures.  相似文献   

5.
The cornified layer, the stratum corneum, of the epidermis is an efficient barrier to the passage of genetic material, i.e. nucleic acids. It contains enzymes that degrade RNA and DNA which originate from either the living part of the epidermis or from infectious agents of the environment. However, the molecular identities of these nucleases are only incompletely known at present. Here we performed biochemical and genetic experiments to determine the main DNase activity of the stratum corneum. DNA degradation assays and zymographic analyses identified the acid endonucleases L-DNase II, which is derived from serpinB1, and DNase 2 as candidate DNases of the cornified layer of the epidermis. siRNA-mediated knockdown of serpinB1 in human in vitro skin models and the investigation of mice deficient in serpinB1a demonstrated that serpinB1-derived L-DNase II is dispensable for epidermal DNase activity. By contrast, knockdown of DNase 2, also known as DNase 2a, reduced DNase activity in human in vitro skin models. Moreover, the genetic ablation of DNase 2a in the mouse was associated with the lack of acid DNase activity in the stratum corneum in vivo. The degradation of endogenous DNA in the course of cornification of keratinocytes was not impaired by the absence of DNase 2. Taken together, these data identify DNase 2 as the predominant DNase on the mammalian skin surface and indicate that its activity is primarily targeted to exogenous DNA.  相似文献   

6.
Role of light in human skin color viariation.   总被引:1,自引:0,他引:1  
The major source of color in human skin derives from the presence within the epidermis of specialized melanin-bearing organelles, the melanosomes. Tanning of human skin on exposure to ultraviolet light results from increased amounts of melanin within the epidermis. Melanosomes synthesized by melanocytes are acquired by keratinocytes and transported within them to the epidermal surface. In some cases, the melanosomes are catobolized en route. New information indicates that the multicellular epidermal melanin unit (melanocyte and associated pool of keratinocytes) rather than the melanocyte alone is the focal point for the control of melanin metabolism within mammalian epidermis. Gross human skin color derives from the visual impact of the summed melanin pigmentation of the many epidermal melanin units. In theory, constitutive skin color in man designates the genetically-determined levels of melanin pigmentation developed in the absence of exposure to solar radiation or other environmental influences; facultative skin color or "tan" characterizes the increases in melanin pigmentation above the constitutive level induced by ultraviolet light. The details of genetic regulation of pigment metabolism within the epidermal melanin units are being clarified. In some mammals at least, the function of epidermal melanin units is significantly influenced by hormones which may be regulated by radiations received through the eyes. Based on an evolutionary history of the human family which exceeds ten million years, it is proposed that melanin pigmentation may have played a number of roles in human adaptions to changing biologic and physical environments.  相似文献   

7.
Exposure to chemicals absorbed by the skin can threaten human health. In order to standardise the predictive testing of percutaneous absorption for regulatory purposes, the OECD adopted guideline 428, which describes methods for assessing absorption by using human and animal skin. In this study, a protocol based on the OECD principles was developed and prevalidated by using reconstructed human epidermis (RHE). The permeation of the OECD standard compounds, caffeine and testosterone, through commercially available RHE models was compared to that of human epidermis and animal skin. In comparison to human epidermis, the permeation of the chemicals was overestimated when using RHE. The following ranking of the permeation coefficients for testosterone was obtained: SkinEthic > EpiDerm, EPISKIN > human epidermis, bovine udder skin, pig skin. The ranking for caffeine was: SkinEthic, EPISKIN > bovine udder skin, EpiDerm, pig skin, human epidermis. The inter-laboratory and intra-laboratory reproducibility was good. Long and variable lag times, which are a matter of concern when using human and pig skin, did not occur with RHE. Due to the successful transfer of the protocol, it is now in the validation process.  相似文献   

8.
Epidermolysis bullosa (EB) and associated skin-fragility syndromes are a group of inherited skin diseases characterised by trauma-induced blistering of the skin and mucous membranes. Mutations in at least 14 distinct genes encoding molecular components of the epidermis or the dermal-epidermal junction (DEJ) can cause blistering skin diseases that differ by clinical presentation and severity of the symptoms. Despite great advances in discerning the genetic basis of this group of diseases, the molecular pathways leading to symptoms are not yet fully understood. Unravelling these pathways by molecular analysis of the structure and in vitro assessment of functional properties of the human proteins involved, combined with genetic models in lower organisms, should pave the way for specific cures for inherited skin fragility.  相似文献   

9.
A new human 33-kDa serine protease was purified from human epidermis, and its cDNA was cloned from a keratinocyte library, from mRNA from a human keratinocyte line (HaCat) and from mRNA from human skin. Polyclonal antibodies specific for the new protein detected three groups of proteins in partially purified extracts of cornified eptihelium of human plantar skin. The three components are proposed to correspond to proenzyme, active enzyme, and proteolytically modified active enzyme. After N-deglycosylation, there was a decrease in apparent molecular mass of all detected components. Expression of the cloned cDNA in a eukaryotic virus-derived system yielded a recombinant protein that could be converted to an active protease by treatment with trypsin. Polymerase chain reaction analyses of cDNA from a number of human tissues showed high expression of the new enzyme in the skin and low expression in brain, placenta, and kidney. Homology searches yielded the highest score for porcine enamel matrix protease (55% amino acid sequence homology). High scores were also obtained for human and mouse neuropsin and for human stratum corneum chymotryptic enzyme. The function of this new protease, tentatively named stratum corneum tryptic enzyme, may be related to stratum corneum turnover and desquamation in the epidermis.  相似文献   

10.
Today reconstructed skin models that simulate human skin, such as Episkin, are widely used for safety or efficacy pre-screening. Moreover, they are of growing interest for regulatory purposes in the framework of alternatives to animal testing. In order to reduce and eventually replace results of in vivo genotoxicity testing with in vitro data, there is a need to develop new complementary biological models and methods with improved ability to predict genotoxic risk. This can be achieved if these new assays do take into account exposure conditions that are more relevant than in the current test systems. In an attempt to meet this challenge, two new applications using a human reconstructed skin model for in vitro genotoxicity assessment are proposed. The skin is the target organ for dermally exposed compounds or environmental stress. Although attempts have been made to develop genotoxicity test procedures in vivo on mouse skin, human reconstructed skin models have not been used for in vitro genotoxicity testing so far, although they present clear advantages over mouse skin for human risk prediction. This paper presents the results of the development of a specific protocol allowing to perform the comet assay, a genotoxicity test procedure, on reconstructed skin. The comet assay was conducted after treatment of Episkin with UV, Lomefloxacin and UV or 4-nitroquinoline-N-oxide (4NQO). Treatment with the sunscreen Mexoryl was able to reduce the extent of comet signal. A second approach to use reconstructed epidermis in genotoxicity assays is also proposed. Indeed, the skin is a biologically active barrier driving the response to exposure to chemical agents and their possible metabolites. A specific co-culture system (Figure 1) using Episkin to perform the regular micronucleus assay is presented. Micronucleus induction in L5178Y cells cultured underneath Episkin was assessed after treatment of the reconstructed epidermis with mitomycin C, cyclophosphamide or apigenin. This second way of using human reconstructed skin for genotoxicity testing aims at improving the relevance of exposure conditions in in vitro genotoxicity assays for dermally applied compounds.  相似文献   

11.
Skin is an attractive target for delivery of genetic therapies and vaccines. However, new approaches are needed to access this tissue more effectively. Here, we describe a new delivery technology based on arrays of structurally precise, micron-scale silicon projections, which we term microenhancer arrays (MEAs). In a human clinical study, these devices effectively breached the skin barrier, allowing direct access to the epidermis with minimal associated discomfort and skin irritation. In a mouse model, MEA-based delivery enabled topical gene transfer resulting in reporter gene activity up to 2,800-fold above topical controls. MEA-based delivery enabled topical immunization with naked plasmid DNA, inducing stronger and less variable immune responses than via needle-based injections, and reduced the number of immunizations required for full seroconversion. Together, the results provide the first in vivo use of microfabricated devices to breach the skin barrier and deliver vaccines topically, suggesting significant clinical and practical advantages over existing technologies.  相似文献   

12.
《Developmental biology》1986,113(1):90-96
Two months after transplantation of human skin onto the nude mouse, excisional wounds were made through the entire thickness of the skin, at the center of the graft, using a 2-mm punch. At various time intervals thereafter, ranging from 2 days to 9 weeks, the graft sites were harvested and processed for an immunohistological study. With a monoclonal antibody directed against HLA-ABC antigens, it was demonstrated that the healing epidermis is of human origin. Moreover, with three different monoclonal antibodies directed against human keratins, named respectively AE1, AE3, and KL1 and with an anti-involucrin antiserum, it is reported that the keratinization and involucrin distribution patterns observed in normal human epidermis (1) are reconstituted, 2 months after transplantation, in the major part of the grafted epidermis, (2) undergo changes during the reepithelialization process, and (3) are restored in the healed epidermis 9 weeks after injury. This study indicates that the nude mouse/human skin model could be a valuable tool to study a major aspect of regeneration such as the reepidermization of human skin without recourse to human volunteers.  相似文献   

13.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

14.
There is a significant gap in our fundamental understanding of early morphological and migratory changes in human Langerhans cells (LCs) in response to vaccine stimulation. As the vast majority of LCs studies are conducted in small animal models, substantial interspecies variation in skin architecture and immunity must be considered when extrapolating the results to humans. This study aims to determine whether excised human skin, maintained viable in organ culture, provides a useful human model for measuring and understanding early immune response to intradermally delivered vaccine candidates. Excised human breast skin was maintained viable in air-liquid-interface organ culture. This model was used for the first time to show morphological changes in human LCs stimulated with influenza virus-like particle (VLP) vaccines delivered via intradermal injection. Immunohistochemistry of epidermal sheets and skin sections showed that LCs in VLP treated skin lost their typical dendritic morphology. The cells were more dispersed throughout the epidermis, often in close proximity to the basement membrane, and appeared vertically elongated. Our data provides for increased understanding of the complex morphological, spatial and temporal changes that occur to permit LC migration through the densely packed keratinocytes of the epidermis following exposure to vaccine. Significantly, the data not only supports previous animal data but also provides new and essential evidence of host response to this vaccination strategy in the real human skin environment.  相似文献   

15.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

16.
Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.  相似文献   

17.
Tissue engineering of cultured skin substitutes   总被引:11,自引:0,他引:11  
Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.  相似文献   

18.
The skin is the outer layer of protection against the environment. The development and formation of the skin is regulated by several genetic cascades including the bone morphogenetic protein (BMP) signaling pathway, which has been suggested to play an important role during embryonic organ development. Several skin defects and diseases are caused by genetic mutations or disorders. Ichthyosis is a common genetic skin disorder characterized by dry scaly skin. Loss-of-function mutations in the filaggrin (FLG) gene have been identified as the cause of the ichthyosis vulgaris (IV) phenotype; however, the direct regulation of filaggrin expression in vivo is unknown. We present evidence that BMP signaling regulates filaggrin expression in the epidermis. Mice expressing a constitutively active form of BMP-receptor-IB in the developing epidermis exhibit a phenotype resembling IV in humans, including dry flaky skin, compact hyperkeratosis, and an attenuated granular layer associated with a significantly downregulated expression of filaggrin. Regulation of filaggrin expression by BMP signaling has been further confirmed by the application of exogenous BMP2 in skin explants and by a transgenic model overexpressing Noggin in the epidermis. Our results demonstrate that aberrant BMP signaling in the epidermis causes overproliferation and hyperkeratinization, leading to an IV-like skin disease.  相似文献   

19.
The human epidermis is characterized by a constant renewal of keratinocytes embedded in a matrix enriched with lipids. Numerous proteins involved in lipid metabolism are found in human epidermis, especially in keratinocytes. Long-chain acyl-CoA derivatives, which are catalyzed by human ACSL5, are important metabolites in several biochemical pathways, including ceramide de novo synthesis. The aim of the present study was to investigate expression of acyl-CoA synthetase isoform 5 (ACSL5) in human epidermis by an in situ, as well as a molecular approach. We show that ACSL5 mRNA and protein are found in human epidermis, as well as in non-differentiated and differentiated HaCaT cells. Keratinocytes of stratum spinosum are the main source for ACSL5 expression in both meshed facial or abdominal skin and ridged skin of upper or lower extremities including TUNEL-positive cells in upper cellular layers. Single keratinocytes of chronic solar-exposed meshed facial epidermis occasionally display a stronger ACSL5 immunostaining. In conclusion, our study indicates that epidermal ACSL5 expression might be involved in differentiation and the stress response of keratinocytes.  相似文献   

20.
A formal validation study was performed, in order to investigate whether the commercially-available reconstructed human epidermis (RHE) models, EPISKIN, EpiDerm and SkinEthic, are suitable for in vitro skin absorption testing. The skin types currently recommended in the OECD Test Guideline 428, namely, ex vivo human epidermis and pig skin, were used as references. Based on the promising outcome of the prevalidation study, the panel of test substances was enlarged to nine substances, covering a wider spectrum of physicochemical properties. The substances were tested under both infinite-dose and finite-dose conditions, in ten laboratories, under strictly controlled conditions. The data were subjected to independent statistical analyses. Intra-laboratory and inter-laboratory variability contributed almost equally to the total variability, which was in the same range as that in preceding studies. In general, permeation of the RHE models exceeded that of human epidermis and pig skin (the SkinEthic RHE was found to be the most permeable), yet the ranking of substance permeation through the three tested RHE models and the pig skin reflected the permeation through human epidermis. In addition, both infinite-dose and finite-dose experiments are feasible with RHE models. The RHE models did not show the expected significantly better reproducibility, as compared to excised skin, despite a tendency toward lower variability of the data. Importantly, however, the permeation data showed a sufficient correlation between all the preparations examined. Thus, the RHE models, EPISKIN, EpiDerm and SkinEthic, are appropriate alternatives to human and pig skin, for the in vitro assessment of the permeation and penetration of substances when applied as aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号