首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D Qian  D Zhou  R Ju  C L Cramer    Z Yang 《The Plant cell》1996,8(12):2381-2394
Farnesylation is required for membrane targeting, protein-protein interactions, and the biological activity of key regulatory proteins, such as Ras small GTPases and protein kinases in a wide range of eukaryotes. In this report, we describe the molecular identification of a plant protein farnesyltransferase (FTase) and evidence for its role in the control of the cell cycle in plants. A pea gene encoding a homolog of the FTase beta subunit was previously cloned using a polymerase chain reaction-based strategy. A similar approach was used to clone a pea gene encoding a homolog of the FTase alpha subunit. The biochemical function of the pea FTase homologs was demonstrated by the reconstitution of FTase enzyme activity using FTase fusion proteins coexpressed in Escherichia coll. RNA gel blot analyses showed that levels of FTase mRNAs are generally higher in tissues, such as those of nodules, that are active in cell division. The relationship of FTase to cell division was further analyzed during the growth of suspension-cultured tobacco BY-2 cells. A biphasic fluctuation of FTase enzyme activity preceded corresponding changes in mitotic activity at the early log phase of cell growth. Moreover, manumycin, a specific inhibitor of FTase, was effective in inhibiting mitosis and growth in these cells. Using synchronized BY-2 cells, manumycin completely blocked mitosis when added at the early S phase but not when added at the G2 phase. These data suggest that FTase is required for the plant cell cycle, perhaps by modulating the progression through the S phase and the transition from G1 to the S phase.  相似文献   

3.
We have described the modulation of four auxin-regulated genes during the growth cycle of suspension-cultured tobacco (Nicotiana tabacum [L.] var White Burley) cells. The genes were transiently expressed 2 to 8 h after transfer of stationary phase cells to fresh medium, during the transition from the quiescent phase of cells leaving the mitotic cycle to the synthesis phase of the cell cycle. After this transient induction, the cells showed a decreased sensitivity to auxin. Although the expression pattern suggests that induction of these genes might be important for cell division, over-production of antisense mRNA for one of these genes (pCNT103) did not influence cell division in transgenic tobacco cells. Furthermore, stimuli such as salicylic acid were capable of inducing gene expression but were unable to restore cell division. Although these data do not conclusively exclude a role for these genes in cell division, their significance in this process is discussed in view of their homology with other auxin-induced genes and in view of the specificity of hormone-induced early responses.  相似文献   

4.
TONSOKU(TSK)/MGOUN3/BRUSHY1 of Arabidopsis thaliana encodes a nuclear leucine-glycine-aspargine (LGN) domain protein implicated to be involved in genome maintenance, and mutants with defects in TSK show a fasciated stem with disorganized meristem structures. We identified a homolog of TSK from tobacco BY-2 cells (NtTSK), which showed high sequence conservation both in the LGN domain and in leucine-rich repeats with AtTSK. The NtTSK gene was expressed during S phase of the cell cycle in tobacco BY-2 cells highly synchronized for cell division. The tsk mutants of Arabidopsis contained an increased proportion of cells with 4C nuclei and cells expressing cyclin B1 compared with the wild type. These results suggest that TSK is required during the cell cycle and defects of TSK cause the arrest of cell cycle progression at G2/M phase.  相似文献   

5.
6.
7.
8.
9.
Brassinosteroids (BRs) are steroidal phytohormones that are essential for many processes in plant growth and development, such as cell expansion, vascular differentiation, and responses to stress. The effects of BRs on cell division are unclear, as attested by contradictory published results. To determine the effect of BRs on cell division, the tobacco (Nicotiana tabacum) BY-2 cell line, which is a widely-used model system in plant cell biology, was used. It was found that brassinolide (BL) promoted cell division only during the early phase of culture and in the absence of auxin (2,4-D). This promotion of cell division was confirmed by RNA gel blot analyses using cell-cycle-related gene probes. At later stages in the culturing periods of BL-supplied and 2,4-D-supplied BY-2 cells, differences in cell multiplication and cell-cycle-related gene expression were observed. Moreover, the BL-treated BY-2 cells had morphological differences from the 2,4-D-treated cells. To determine whether suppressed organellar DNA replication limited this promotion of cell division during the early culture phase, this replication was examined and it was found that BL treatment had no effect on activating organellar (plastid- and mitochondrial-) DNA synthesis. As preferential organellar DNA synthesis, which is activated by 2,4-D, is necessary during successive cell divisions in BY-2 cells, these data suggest that the mechanism of the promotion of cell division by BL treatment is distinct from that regulated by the balance of auxin and cytokinin.  相似文献   

10.
Yu Y  Wang HY  Liu LN  Chen ZL  Xia GX 《Plant cell reports》2007,26(7):889-894
The molecular mechanisms controlling cytokinesis in plant cell division cycle remains largely unknown. In this study, a functional approach was taken to identify genes that may play roles in cytokinesis in tobacco BY-2 cells, using fission yeast as the host organism. A total of 22 BY-2 genes that perturbed the terminal stage of cell division when ectopically expressed in yeast cells were isolated, among which, several encode for uncharacterized genes. Additionally, RT-PCR analysis indicated that four of the isolated genes were expressed in a cell cycle-dependent manner. Our results demonstrate that fission yeast system can be efficiently used to identify the genes that may function, either positively or negatively, in the regulation of cytokinesis. More importantly, the candidate genes we have isolated in this work can provide useful information for unraveling the regulators controlling cell separation at the late stage of BY-2 cell division. Yi Yu and Hai-Yun Wang contributed equally to this work.  相似文献   

11.
12.
13.
14.
15.
16.
Telomeres are vital for preserving chromosome integrity during cell division. Several genes encoding potential telomere-binding proteins have recently been identified in higher plants, but nothing is known about their function or regulation during cell division. In this study, we have isolated and characterized a cDNA clone, pNgTRF1, encoding a putative double-stranded telomeric repeat binding factor of Nicotiana glutinosa, a diploid tobacco plant. The predicted protein sequence of NgTRF1 (Mr = 75,000) contains a single Myb-like domain with significant homology to a corresponding motif in human TRF1/Pin2 and TRF2. Gel retardation assays revealed that bacterially expressed full-length NgTRF1 was able to form a specific complex only with probes containing three or more contiguous telomeric TTTAGGG repeats. The Myb-like domain of NgTRF1 is essential, but not sufficient, to bind the telomeric repeat sequence. The glutamine-rich extreme C-terminal region, which does not exist in animal proteins, was additionally required to form a specific telomere-protein complex. The dissociation constant (Kd) of the Myb motif plus the glutamine-rich domain of NgTRF1 to the two-telomeric repeat sequence was evaluated to be 4.5 +/- 0.2 x 10-9 m, which is comparable to that of the Myb domain of human TRF1. Expression analysis showed that NgTRF1 gene activity was inversely correlated with the cell division capacity of tobacco root cells and during the 9-day culture period of BY-2 suspension cells, while telomerase activity was positively correlated with cell division. In synchronized BY-2 cells, NgTRF1 was selectively expressed in G1 phase, whereas telomerase activity peaked in S phase. These findings suggest that telomerase activity and NgTRF1 expression are differentially regulated in an opposing fashion during growth and cell division in tobacco plants. The possible physiological functions of NgTRF1 in tobacco cells are also discussed.  相似文献   

17.
18.
19.
A mutation in the cell division gene ftsK causes super-induction of sigma(70)-dependent stress defense genes, such as uspA, during entry of cells into stationary phase. In contrast, we report here that stationary phase induction of sigma(S)-dependent genes, uspB and cfa, is attenuated and that sigma(S) accumulates at a lower rate in ftsK1 cells. Ectopic overexpression of rpoS restored induction of the rpoS regulon in the ftsK mutant, as did a deletion in the recA gene. Thus, a mutation in the cell division gene, ftsK, uncouples the otherwise coordinated induction of sigma(S)-dependent genes and the universal stress response gene, uspA, during entry into stationary phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号