首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific oligonucleotide has been used to isolate a cDNA prepared from the mRNA for a trout High Mobility Group (HMG) protein closely related to trout HMG-T and bovine HMG 1 and 2 proteins. The sequence isolated more closely resembles bovine HMG-1 than the previously sequenced HMG-T protein in regions corresponding to the N terminal half of the protein. Northern blot analysis at low stringency indicated that 2 related sequences are expressed in total trout testis mRNA. Southern blots of total trout DNA indicate that several different forms of the homologous sequence are present in the trout genome and an estimate of copy number by dot-blot shows 4 HMG-T genes per trout sperm DNA equivalent. Analysis of mRNA from several trout tissues, including testis, liver and kidney indicates that expression of genes for histones and the larger HMG proteins in trout is not closely coupled.  相似文献   

2.
Binding of HMG-T to trout testis chromatin   总被引:1,自引:0,他引:1  
When 125I-labeled HMG-T was incubated with trout testis nuclei under conditions of pH and ionic strength approximating those in vivo, most of the radioactivity bound to the chromatin. Most labeled non-nuclear proteins which were tested did not bind. Four large cyanogen bromide fragments of HMG-T each bound, suggesting that HMG-T interacts with chromatin along most of its length. Trout testis chromatin contains two populations of HMG-T molecules which differ in their extractability with NaCl solutions; the 125I-labeled protein equilibrated mainly with the more readily extracted population. HMG-T also bound to nuclease-treated chromatin, an observation with important implications for studies in which nucleases are employed to probe chromatin structure.  相似文献   

3.
Antibodies against the trout testis non"histone chromosomal protein, high mobility group protein T (HMG-T), have been elicited in goats. The antiserum was shown to be specific for HMG-T and did not cross-react with histone 1 or with the other two trout testis HMG proteins, H6 and ubiquitin. Purified anti-HMG-T IgG was used to determine the location of HMG-T within chromatin subunits separated on sucrose gradients. Binding of fluorescent labeled anti-HMG-T to these subunits clearly supports the notion that this protein is associated not with the nucleosome core but rather with the internucleosomal linker regions, and previously suggested (Levy W., B., Wong, N.C.W., and Dixon, G. H. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 2810-2814).  相似文献   

4.
5.
The amino acid sequence of the N-terminal two-thirds of a trout high-mobility-group protein, HMG-T, has been determined as a continuous sequence of 174 residues out of a total for the whole molecule of 260 residues. When this sequence was compared with published sequences of long cyanogen bromide-derived peptides from the analogous calf-thymus proteins, HMG-1 and -2 (Walkeret al. , 1979), there was strong homology, with 60–70% identity of corresponding amino acid residues in the three proteins, the majority in lengthy identical runs. However, a discrepancy in the position of a highly acidic run of aspartic and glutamic residues suggests this region may not lie within the main polypeptide chain but may represent a separate chain or possibly a branched structure,  相似文献   

6.
7.
The trout testis contains two major high mobility group (HMG) proteins HMG-T and H6 which, although related to the four mammalian HMGs, exhibit distinct variation as evidenced by differences in electrophoretic mobility and amino acid sequence. Previous work using various endonucleases as probes has shown that HMG-T and H6 are located at specific sites in the testis chromatin. The differentiation of testis cells during spermatogenesis is characterized by a unique transition from a histone-packaged genome to one bound by a class of small molecular weight, highly basic proteins, the protamines. Questions arise as to whether any of the HMG variability may be unique to the process of spermatogenesis and whether the histone-protamine transition occurring in most testis cells affects the HMG protein distribution and/or the specificity of the probe. In an attempt to answer these questions, the distribution of the HMG proteins in the chromatin of trout liver, a tissue lacking protamine, has been studied and comparisons made with testis. Liver HMGs exhibit the same electrophoretic characteristics as the testis HMGs indicating that the variability when compared to mammalian HMGs is primarily phylogenetic in origin rather than tissue-specific. Furthermore, micrococcal nuclease digestion of liver nuclei and its effect on the subsequent HMG protein distribution during chromatin fractionation yields a pattern very similar to that for testis, suggesting that the interaction of the HMGs with the remaining testis nucleohistone is not significantly altered by the ongoing transition to nucleoprotamine. Finally, the HMGs represent an unusually high proportion of the total testis non-histone protein population; the implications of this are discussed.  相似文献   

8.
Iodinated proteins were degraded after injection into HeLa cells at first-order rates with half-lives varying from three hours for the trout monhistone chromosomal protein, HMG-T, -to 60 hours for whale myoglobin. Fluoresceinated-bovine serum albumin (fl-BSA) was degraded almost twice as fast as unmodified BSA. The rate of degradation of 125I-BSA was very similar in eight cell lines of mouse, human, monkey and rat origin. Microinjected proteins were analyzed on SDS-acrylamide gels after injection, and for BSA and immunoglobin G, all remaining intracellular 125I migrated at the molecular weight of the injected proteins. By contrasting, more than 80% of the extracellular 125I chromatographed as iodotyrosine. With the exception of fl-BSA, which exhibited perinuclear accumulation in approximately one-half of the injected cells, autoradiography showed that throughout the period of study the injected proteins remained dispersed in the cytoplasm.  相似文献   

9.
K Tsuda  M Kikuchi  K Mori  S Waga  M Yoshida 《Biochemistry》1988,27(16):6159-6163
The isolation and sequencing of a cDNA clone coding for the entire sequence of pig thymus non-histone protein HMG1 are described. The sequence analysis reveals a complete 2192-nucleotide sequence with a 5'-terminal untranslated region of 11 nucleotides, 642 nucleotides of an open reading frame that encoded 214 amino acids, and a 3'-terminal untranslated region of 1539 nucleotides. The HMG1 protein, deduced from the nucleotide sequence, has a molecular weight of 24,785 and a C-terminal of a continuous run of 30 acidic amino acids, encoded by a simple repeating sequence of (GAN)30. The predicted amino acid sequence is homologous to HMG1, HMG2, and HMG-T sequences from several sources, suggesting that the protein conformation is under evolutionary constraints. Northern blot analysis reveals that another hybridizable RNA species of smaller size is present. Southern blot analyses suggest that pig genome contains several HMG1 gene equivalents.  相似文献   

10.
Protamine precursors in human spermatozoa   总被引:1,自引:0,他引:1  
Basic proteins isolated from human sperm nuclei are highly heterogeneous. Three groups of nuclear basic proteins have been characterized: somatic-type as well as testis-specific histones, protamines and basic proteins with an electrophoretic mobility which is intermediate between that of histones and that of protamines. Human protamines can be separated into 2 protein families with different amino acid composition and amino-acid sequence. Protamines HP1 differ in their degree of phosphorylation. Protamines HP2, 3 and 4 differ by their amino-terminal sequence. Intermediate basic proteins (HPI1, HPI2, HPS1, HPS2) share a common C-terminal sequence of 54 residues identical to the amino-acid sequence of protamine HP3; only their N-terminal regions are different. Taking into account these structural homologies, the intermediate basic protein HPI1 appears as a precursor of protamines HP2 and HP3.  相似文献   

11.
The content of 4 fractions of nuclear proteins (histones, acid chromatin protein, globulins and chromatin-free acid protein) in diploid and polyploid hepatocytes from intact and regenerating liver of mice is studied. These types of nuclei are found to differ in the protein content and in the protein/DNA ratio. Synthesis of all classes of nuclear proteins was intensified at the G1-stage, and synthesis of DNP non-histone proteins at the end of S- and G2-stage. Possible role of different nuclear proteins in the regulation of cell multiplication is discussed.  相似文献   

12.
The protein sequences derived from cDNA sequences for Hsp70 binding proteins from human (HspBP2) and rat tissues (HspBPR) are presented in this paper. The derived amino acid sequences of these proteins differ from human HspBP1 in the number of consecutive glycines near the amino-terminus. These differences, however, do not alter the inhibitory activity.  相似文献   

13.
J Singh  G H Dixon 《Biochemistry》1990,29(26):6295-6302
  相似文献   

14.
The terminal step during aerobic plasmalogen biosynthesis is catalyzed by a microsomal desaturase system which converts 1-O-alkyl-2-acyl-sn-glycerophosphoethanolamine to 1-O-alk-1'-enyl-2-acyl-sn-glycerophosphoethanolamine (ethanolamine plasmalogen). The reaction depends on oxygen and NAD(P)H and is stimulated 3-10-fold by soluble activating factors contained in the 100 000 X g supernatant. Two stimulating proteins have been isolated from pig kidney; the partially purified proteins have identical molecular weights (27 000) but differ in their respective isoelectric points (protein I, 5.1 and protein II, 4.9). Both proteins behave identically in the biochemical studies conducted. Exogenous substrate binds to the stimulating proteins; the transfer of ethanolamine, but not of choline phospholipids, from liposomes to microsomes is enhanced by the stimulating proteins. They stimulate plasmalogen synthesis from either exogenous or endogenous substrate (synthesized from alkylglycerophosphoethanolamine by microsomal transacylases). The stimulating proteins have no enzymatic activity themselves; it is suggested that they affect events within the membrane and function as specific mediators between the membrane-bound enzyme system and the lipophilic substrate.  相似文献   

15.
16.
We describe a method for isolation and purification of the chromosomal proteins HMG1 and HMG2 in non-denaturing conditions which overcomes the difficulties of the published methods concerning yield and purity. The method is based on salt extraction, selective precipitation with ammonium sulfate and DEAE-cellulose chromatography. All studied properties of these proteins (formation of protein tetramers, enhancement of micrococcal nuclease digestion of DNA and chromatin, and protection of 165-basepair DNA in chromatosome) differ significantly from the properties of HMG1 and 2 isolated under denaturing conditions.  相似文献   

17.
Proteins of whole mitochondria from mouse liver and brain and proteins of liver mitochondrial fractions (plasma and rough membrane fraction) were separated by two-dimensional electrophoresis. Protein patterns of two inbred strains of mouse, C57BL/6J and DBA/2J, and of F1 mice of these two strains were studied. The protein patterns obtained from the different mitochondrial materials were analyzed with regard to their protein composition and the genetic variability of proteins (qualitative and quantitative protein variants). Included in this analysis are data previously obtained from the cytosols and plasma membranes of the same organs and mouse strains. The results showed the following. (1) Mitochondria and organelle-free cell components (cytosol and plasma membranes) have only a few percent of their proteins in common, while two organs, liver and brain, reveal up to approximately 50% organ-nonspecific proteins. The frequency of proteins common to solubilized and structure-bound proteins ranges below 20%. (2) Genetic variability in protein amount occurs much more frequently than genetic variability in protein structure. Liver proteins reveal more genetic variants than brain proteins. Proteins solubilized in the cell show more genetic variation than structure-bound proteins. Furthermore, the results show that with regard to the composition and the genetic variability of proteins, liver and brain differ more in their mitochondria than in their cytosol and plasma membranes.This work was supported by grants from the Deutsche Forschungsgemeinschaft awarded to Sonderforschungsbereich 29.  相似文献   

18.
The dioxygen stretch bands in infrared spectra for solutions of oxy species of human hemoglobin A and its separated subunits, human mutant hemoglobin Zurich (beta 63His to Arg), rabbit hemoglobin, lamprey hemoglobin, sperm whale myoglobin, bovine myoglobin, and a sea worm chlorocruorin are examined. Each protein exhibits multiple isotope-sensitive bands between 1160 and 1060 cm-1 for liganded 16O2, 17O2, and 18O2. The O-O stretch bands for each of the mammalian myoglobins and hemoglobins are similar, with frequencies that differ between proteins by only 3-5 cm-1. The spectra for the lamprey and sea worm hemoglobins exhibit greater diversity. For all proteins an O-O stretch band expected to occur near 1125 cm-1 for 16O2 and 17O2, but not 18O2, appears split by approximately 25 cm-1 due to an unidentified perturbation. The spectrum for each dioxygen isotope, if unperturbed, would contain two strong bands for the mammalian myoglobins (1150 and 1120 cm-1) and hemoglobins (1155 and 1125 cm-1). Two strong bands separated by approximately 30 cm-1 for each oxy heme protein subunit indicate that two major protein conformations (structures) that differ substantially in O2 bonding are present. The two dioxygen structures can result from a combination of dynamic distal and proximal effects upon the O2 ligand bound in a bent-end-on stereochemistry.  相似文献   

19.
Acclimation of the halotolerant alga Dunaliella salina to low temperature induced the accumulation of a 12.4 kDa protein (DsGRP-1) and reduction of a 13.1 kDa protein (DsGRP-2). DsGRP-1 and DsGRP-2 are boiling-stable proteins that are localised in the cytoplasm, as revealed by sub-cellular fractionation and by immuno-localisation. The proteins were partially purified and their corresponding genes were cloned. The predicted sequences are homologous to Glycine-Rich RNA-binding Proteins (GRPs) from plants and cyanobacteria. The nucleotide sequences of grp1 and grp2 differ in a short insert encoding 9 amino acids in the glycine-rich domain of DsGRP-2. grp2 contains a single intron at position 179 indicating that DsGRP-1 and DsGRP-2 are not derived from alternative splicing of a common gene. The level of grp mRNA increased at 7 degrees C and was rapidly depressed at 24 degrees C. Analysis of binding to ribonucleotide homopolymers revealed that DsGRP-1 and DsGRP-2 bind preferentially to poly-G and to poly-U indicating that they are RNA-binding proteins. It is proposed that DsGRP-1 and DsGRP-2 are encoded by distinct genes which are differentially regulated by temperature.  相似文献   

20.
A gene from Xenopus laevis that is expressed specifically in the nervous system beginning at the stage of neural plate formation has been isolated and several cDNAs have been sequenced. The sequence of the predicted protein contains two copies of a presumed RNA-binding domain, each of which includes two short conserved motifs characteristic for ribonucleoproteins (RNPs), called the RNP-1 and RNP-2 consensus sequences. We name this gene Xenopus nrp-1, for nervous system-specific RNP protein-1. Sequence comparisons suggest that the nrp-1 protein is a heterogeneous nuclear RNP protein, but it is clearly distinct from previously reported hnRNP proteins such as the A1, A2/B1, and C1 proteins. nrp-1 RNA undergoes an alternative splicing event giving rise to two predicted protein isoforms that differ from each other by seven amino acids. In situ hybridization to tadpole brain shows that the nrp-1 gene is expressed in the ventricular zone where cell proliferation takes place. The occurrence of an RNP protein with nervous system-limited expression suggests that it may be involved in the tissue-specific control of RNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号