首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6–2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.  相似文献   

3.
4.
5.
Lee YI  Kim SY  Cho CH  Seo M  Cho DH  Kwak SJ  Juhnn YS 《FEBS letters》2003,555(2):329-334
Individual cell types express a characteristic balance between heterotrimeric G protein alpha and betagamma subunits, but little is known about the regulatory mechanism. We systemically examined the regulatory mechanism in CHO cells. We found that expression of Galphas, Galphai2, and Galphaq proteins increased in direct proportion to the increase of Gbeta1gamma2 overexpressed transiently. Expression of Gbeta protein also increased following overexpression of Galphas, Galphai2, and Galphaq. The Gbetagamma overexpression stimulated degradation of Gbeta in contrast to reduction of Galphas degradation. We conclude that coordinate expression of the G protein subunits involves regulation of protein degradation via proteasome in CHO cells.  相似文献   

6.
7.
We report how the combined use of protein expression reporter green fluorescent protein (GFP), and of an incomplete factorial approach (“InFFact”) made of 12 combinations of different states of three expression variables (bacterial strains, culture media and expression temperatures) created a convenient tool for screening the soluble expression of recombinant proteins in Escherichia coli (E. coli).In the first part of this work, we used two recombinant proteins that could be easily detected by Western blotting in the soluble fraction of E. coli lysate in most of the 12 InFFact combinations. When these proteins were fused to GFP and used in the same experiment (“InFFact-GFP”), fluorescence signals proved as sensitive and reliable as those provided by Western blotting. A trend analysis based on Western blot signals or on fluorescence allowed finding expression conditions for successfully scaling up the production of both proteins. Thus, GFP allowed InFFact trend analysis to be performed without gel electrophoresis or Western blotting.In the second part, we compared the results obtained by InFFact and InFFact-GFP when two other recombinant proteins were used which, in contrast with the proteins used in the first part, were barely detectable by Western blotting. Surprisingly, InFFact-GFP but not InFFact was able to find expression conditions for successfully scaling up the production of both proteins, suggesting that GFP could increase the solubility of the fusion partner.In conclusion, GFP allowed InFFact to be performed without gel electrophoresis and with at least the same sensitivity and specificity as that of Western blotting.  相似文献   

8.
The structural domains of proteins have often been identified through the use of limited proteolysis. In structural genomics studies, it is necessary to carry this out in a high-throughput manner. Here, we constructed a novel high-throughput system, which consists of cell-free protein expression and one-step affinity purification, followed by limited proteolysis using a unique new method, referred to “on beads method”. All these steps were carried out on 96-well plate formats and completed in two days, even by manual handling. The merits of the new method versus the conventional one are as follows: (1) experimental times are reduced, (2) the sample preparation for limited proteolysis experiments is simplified, and (3) both protein purification and limited digestion can be performed “in situ” on the same sample plate. This preparation method is therefore suitable for highly automated, proteolytic analyses coupled to mass spectrometry techniques at a micro-scale protein expression level. The resulting protease-resistant fragments were analyzed by MALDI-TOF-MS and protein domains of 34 mouse cDNA products were identified with this system.  相似文献   

9.
In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template which contains a cDNA clone covering the nucleocapsid gene of SARS-CoV HKU-39449. Restriction enzymes digestion and sequence analysis indicated the recombinant plasmid of pTRE-Tight-SARS-N contained the nucleocapsid gene with the optimized nucleotide sequence which will improve the translation efficiency. Positive cell clones were selected by cotransfecting pTRE-Tight-SARS-N with the linear marker pPUR to BHK-21 Tet-on cells in the presence of puromycin. A set of double-stable eukaryotic cell lines (BHK-Tet-SARS-N) with inducible control of the SARS-CoV neucleocapsid gene expression was identified by using SDS-PAGE and Western-blot analysis. The expression of SARS-CoV nucleocapsid protein was tightly regulated by the varying concentration of doxcycline in the constructed double-stable cell line. The constructed BHK-Tet-SARS-N cell strains will facilitate the rescue of SARS-CoV in vitro and the further reverse genetic research of SARS-CoV.  相似文献   

10.
11.
Two soybean cDNA clones, SPK-3 and SPK-4, encoding putative protein kinases were isolated and characterized. Both cDNAs encoded approximately 40-kDa serine/threonine kinases with unusual stretches of acidic amino acids in their carboxy-terminal regions, which are highly homologous to PKABA1 from wheat and ASKs from Arabidopsis. These kinases are encoded by one- or two-copy genes in the soybean genome. Notably, SPK-3 and -4 showed different patterns of expression in various soybean tissues. SPK-3 is highly expressed in dividing and elongating tissues of young seedlings but relatively weakly in tissues of mature plants. In contrast, SPK-4 showed relatively high and constitutive expression in all the tissues examined except for leaf tissues of mature plants. Although various stressors, such as dehydration and high salinity, increased the expression of both genes, the induction kinetics were different. The two genes also differed in their response to abscisic acid (ABA). SPK-3 was induced but SPK-4 was not affected by exogenously supplied abscisic acid. In accordance with these expression data analysis of the activity of a chimeric SPK-3 promoter::β-glucuronidase (GUS) reporter gene by transient expression in tobacco leaves confirmed the inducibility of SPK-3 by salt and ABA. Polyclonal antibodies raised against a recombinant SPK-4 protein produced in Escherichia coli specifically recognized both recombinant SPK-3 and -4 proteins. Kinase assays using affinity-purified SPK-4/antibody complexes with crude soybean extracts as substrate identified specific phosphorylation of two 41 and 170 kDa soybean proteins that were phosphorylated on serine residues. Taken together, our results suggest that SPK-3, and/or SPK-4 are functional serine protein kinase(s). Furthermore, SPK-3 and -4 may play different roles in the transduction of various environmental stresses. Received: 6 January 1997 / Accepted: 19 March 1997  相似文献   

12.
An E. coli vector system was constructed which allows the expression of fusion genes via a l-rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.  相似文献   

13.
Inherited deleterious mutations in one of the Fanconi anemia genes lead to a disease, characterized by bone marrow failure, myeloid leukemia, and hypersensitivity to DNA damage. We identified proteins likely associated to the molecular signaling pathways involved in DNA repair of interstrand cross-link lesions and in mechanisms of genomic stability mediated by FA/BRCA pathways. We compared protein maps resolved by bidimensional electrophoresis and analyzed differentially expressed proteins, by mass spectrometry, between FA complementation group C (FANCC)-deficient cells, and their ectopically corrected counterpart in physiological conditions or after treatment with MMC. We found six differentially expressed proteins; among them, the checkpoint mediator protein MDC1 whose expression was disrupted in FANCC−/− cells. The potential role of differentially expressed proteins in FA phenotype is discussed.  相似文献   

14.
蛋白激酶D(Protein kinase D,PKD)是一种新的丝氨酸/苏氨酸蛋白激酶家族和甘油二酯(Diacylglycerol,DAG)受体,参与细胞内多种生理生化过程。为获得高纯度的PKD1的催化结构域(PKD1-cat)用于晶体学结构的研究,将带有GST标签的PKD1-cat基因克隆到杆状病毒转移载体pFastBac1中,构建了重组质粒。将重组质粒转化到含穿梭载体Bacmid的DH10Bac感受态细胞中,转座后获得了含目的基因GST-PKD1-cat的重组Bacmid。重组Bacmid DNA转染Sf9昆虫细胞后,获得重组杆状病毒并扩毒。将毒种以5 PFU/cell的感染复数感染悬浮培养的T.ni昆虫细胞,SDS-PAGE和Western blotting检测表达产物。结果显示,表达产物在分子量约68 kDa处有一特异条带可与GST单克隆抗体发生反应。经谷胱甘肽琼脂糖凝胶亲和层析纯化和PreScission Protease切除GST标签后,得到了纯度很高的分子量约42 kDa的目的蛋白PKD1-cat。体外PKD激酶活性实验结果显示,随着PKD1-cat浓度的增加,激酶活性增高。这些结果显示截短的重组PKD1-cat有很高的催化活性和纯度,为采用核磁共振或晶体学方法解析PKD1-cat的三维结构奠定了基础。  相似文献   

15.
We describe a cloning and expression system which is based on the Escherichia coli T7 expression system and Gateway recombination technology. We have produced numerous destination vectors with selected fusion tags and an additional set of entry vectors containing the gene of interest and optional labeling tags. This powerful system enables us to transfer a cDNA to several expression vectors in parallel and combine them with various labeling tags. To remove the attached amino terminal tags along with the unwanted attB1 site, we inserted PreScission protease cleavage sites. In contrast to the commercially available destination vectors, our plasmids provide kanamycin resistance, which can be an advantage when expressing toxic proteins in E. coli. Some small-scale protein expression experiments are shown to demonstrate the usefulness of these novel Gateway vectors. In summary, this system has some benefits over the widely used and commercially available Gateway standard system, and it enables many different combinations for expression constructs from a single gene of interest.  相似文献   

16.
17.
18.
Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation.  相似文献   

19.
20.
叶绿体表达系统为植物源重组药用蛋白和亚基疫苗的生产提供了一个有效的途径。为验证SARS亚基疫苗在叶绿体中表达的可行性,以及为植物源SARS亚基疫苗的生产提供一套高效、低成本的技术平台,本研究将人工优化合成的SARS-CoV突刺蛋白(S蛋白)受体结合区序列RBD与载体分子CTB融合基因导入烟草叶绿体基因组中。PCR和Southern杂交分析表明,外源融合基因已整合到烟草叶绿体基因组中,并获得同质化。Western杂交分析表明,重组融合蛋白CTB-RBD在叶绿体转基因烟草中获得表达,且主要以可溶性单体形式存在。ELISA分析表明,在不同生长阶段、不同生长部位和不同时间点烟草叶片中,重组融合蛋白CTB-RBD的表达水平呈现明显的变化。重组蛋白在成熟叶片中的表达水平最高可以达到10.2%TSP。本研究通过SARS亚基疫苗RBD在烟草叶绿体中的高效表达,有望为植物源SARS亚基疫苗的生产以及SARS血清抗体的检测提供一个有效的技术平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号