首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patellofemoral pain is a common knee disorder with a multi-factorial etiology related to abnormal patellar tracking. Our hypothesis was that the pattern of three-dimensional rotation and translation of the patella induced by selective activation of individual quadriceps components would differ between subjects with patellofemoral pain and healthy subjects. Nine female subjects with patellofemoral pain and seven healthy female subjects underwent electrical stimulation to selectively activate individual quadriceps components (vastus medialis obliquus, VMO; vastus medialis lateralis, VML; vastus lateralis, VL) with the knee at 0° and 20° flexion, while three-dimensional patellar tracking was recorded. Normalized direction of rotation and direction of translation characterized the relative amplitudes of each component of patellar movement. VMO activation in patellofemoral pain caused greater medial patellar rotation (distal patellar pole rotates medially in frontal plane) at both knee positions (p<0.01), and both VMO and VML activation caused increased anterior patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects at 20° knee flexion. VL activation caused more lateral patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects. In healthy subjects the 3-D mechanical action of the VMO is actively modulated with knee flexion angle while such modulation was not observed in PFP subjects. This could be due to anatomical differences in the VMO insertion on the patella and medial quadriceps weakness. Quantitative evaluation of the influence of individual quadriceps components on patellar tracking will aid understanding of the knee extensor mechanism and provide insight into the etiology of patellofemoral pain.  相似文献   

2.
Tendon orientations in knee models are often taken from cadaver studies. The aim of this study was to investigate the effect of muscle activation on tendon orientation in vivo. Magnetic resonance imaging (MRI) images of the knee were made during relaxation and isometric knee extensions and flexions with 0 degrees , 15 degrees and 30 degrees of knee joint flexion. For six tendons, the orientation angles in sagittal and frontal plane were calculated. In the sagittal plane, muscle activation pulled the patellar tendon to a more vertical orientation and the semitendinosus and sartorius tendons to a more posterior orientation. In the frontal plane, the semitendinosus had a less lateral orientation, the biceps femoris a more medial orientation and the patellar tendon less medial orientation in loaded compared to unloaded conditions. The knee joint angle also influenced the tendon orientations. In the sagittal plane, the patellar tendon had a more anterior orientation near full extension and the biceps femoris had an anterior orientation with 0 degrees and 15 degrees flexions and neutral with 30 degrees flexions. Within 0 degrees to 30 degrees of flexion, the biceps femoris cannot produce a posterior shear force and the anterior angle of the patellar tendon is always larger than the hamstring tendons. Therefore, co-contraction of the hamstring and quadriceps is unlikely to reduce anterior shear forces in knee angles up to 30 degrees . Finally, inter-individual variation in tendon angles was large. This suggests that the amount of shear force produced and the potential to counteract shear forces by co-contraction is subject-specific.  相似文献   

3.
PurposeThe purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ).MethodsFifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.ResultsThe peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001).ConclusionThis study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.  相似文献   

4.

Background

Clinically, plantar fasciitis (PF) is believed to be a result and/or prolonged by overpronation and excessive loading, but there is little biomechanical data to support this assertion. The purpose of this study was to determine the differences between healthy individuals and those with PF in (1) rearfoot motion, (2) medial forefoot motion, (3) first metatarsal phalangeal joint (FMPJ) motion, and (4) ground reaction forces (GRF).

Methods

We recruited healthy (n=22) and chronic PF individuals (n=22, symptomatic over three months) of similar age, height, weight, and foot shape (p>0.05). Retro-reflective skin markers were fixed according to a multi-segment foot and shank model. Ground reaction forces and three dimensional kinematics of the shank, rearfoot, medial forefoot, and hallux segment were captured as individuals walked at 1.35 ms−1.

Results

Despite similarities in foot anthropometrics, when compared to healthy individuals, individuals with PF exhibited significantly (p<0.05) (1) greater total rearfoot eversion, (2) greater forefoot plantar flexion at initial contact, (3) greater total sagittal plane forefoot motion, (4) greater maximum FMPJ dorsiflexion, and (5) decreased vertical GRF during propulsion.

Conclusion

These data suggest that compared to healthy individuals, individuals with PF exhibit significant differences in foot kinematics and kinetics. Consistent with the theoretical injury mechanisms of PF, we found these individuals to have greater total rearfoot eversion and peak FMPJ dorsiflexion, which may put undue loads on the plantar fascia. Meanwhile, increased medial forefoot plantar flexion at initial contact and decreased propulsive GRF are suggestive of compensatory responses, perhaps to manage pain.  相似文献   

5.
PurposeThis study attempted to assess if the resisted contraction of medial rotators of the tibia increases the ratio between the activity of vastus medialis (VM) and vastus lateralis (VL) during maximal isometric contractions (MIC) of the quadriceps femoral (QF) muscle at 90° of knee flexion.MethodsAbout 24 female subjects participated in this study, performing four series MIC of the QF. In the first series subjects performed only MIC of the QF muscle, whereas in the other three there was MIC of the QF with resisted contraction of medial rotators of the tibia, with the tibia positioned in medial, neutral and lateral rotation. During each contraction, VM and VL electromyographic signal (EMGs) and QF force were collected, being the EMGs root mean square (RMS) used to access the activity level of these muscles.ResultsThe use of the General Linear Model (GLM) test showed that for α = 0.05 there was a significant increase in the VM:VL ratio when the resisted contraction of medial rotators of the tibia was performed with the tibia in medial (p = <0.0001), neutral (p = <0.0001) and lateral rotation (p = 0.001). The same test showed that during MIC of the QF associated to resisted contraction of medial rotators of the tibia there were no significant differences in the VM:VL ratio between the three tibial rotation positions adopted (p = 0.866 [medial–neutral]; p = 0.106 [medial–lateral]; p = 0.068 [neutral–lateral]).ConclusionsThe resisted contraction of medial rotators of the tibia increases the VM:VL ratio during MIC of the QF and the tibial rotation position does not influence the VM:VL ratio during MIC associated to resisted contraction of medial rotators of the tibia.  相似文献   

6.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   

7.
EMG analysis has indicated that the vastus lateralis and vastus medialis contribute less to the quadriceps moment during knee extension than the physiological cross-sectional areas (PCSA's) of the muscles indicate. Both PCSA- and EMG-based quadriceps force distributions were utilized while computationally simulating knee extension. For both distributions, a 10 degrees increase in the Q-angle and a 50% decrease in the force applied by the vastus medialis were simulated, and the influence of these changes on the resultant force and moment applied by the quadriceps muscles and the patella tendon was quantified. For both quadriceps force distributions, increasing the Q-angle increased the lateral force and the moment acting to rotate the distal patella laterally. Due to the relatively large forces initially attributed to the vastus medialis and vastus lateralis for the PCSA-based quadriceps force distribution, decreasing the vastus medialis force created a large force imbalance between these two muscles. For the PCSA-based quadriceps force distribution, decreasing the vastus medialis force increased the lateral rotation moment and the moment acting to tilt the patella laterally. For the EMG-based quadriceps force distribution, decreasing the vastus medialis force produced relatively little change in the tilt and rotation moments. For both quadriceps force distributions, increasing the Q-angle increased the maximum and mean cartilage pressure during flexion, but decreasing the vastus medialis force only increased the cartilage pressures for the PCSA-based quadriceps distribution. The choice of the initial quadriceps distribution can influence the outcome of patellofemoral simulation when manipulating quadriceps muscle forces.  相似文献   

8.
Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under compression and to compare the coupled motions of the ACL-deficient knee with those of the intact knee. Ten intact cadaveric knees were tested by applying a 1600 N compressive load and measuring coupled internal-external and varus-valgus rotations and anterior-posterior and medial-lateral translations at 0 deg, 15 deg, and 30 deg of flexion. Compressive loads were applied along the functional axis of axial rotation, which coincides approximately with the mechanical axis of the tibia. The ACL was excised and the knees were tested again. In the intact knee, the peak coupled motions were 3.8 deg internal rotation at 0 deg flexion changing to -4.9 deg external rotation at 30 deg of flexion, 1.4 deg of varus rotation at 0 deg flexion changing to -1.9 deg valgus rotation at 30 deg of flexion, 1.4 mm of medial translation at 0 deg flexion increasing to 2.3 mm at 30 deg of flexion, and 5.3 mm of anterior translation at 0 deg flexion increasing to 10.2 mm at 30 deg of flexion. All changes in the peak coupled motions from 0 deg to 30 deg flexion were statistically significant (p<0.05). In ACL-deficient knees, there was a strong trend (marginally not significant, p=0.07) toward greater anterior translation (12.7 mm) than that in intact knees (8.0 mm), whereas coupled motions in the other degrees of freedom were comparable. Because the coupled motions in all four degrees of freedom in the intact knee and ACL-deficient knee are sufficiently large to substantially affect the tibiofemoral contact area, all degrees of freedom should be included when either developing mathematical models or designing mechanical testing equipment for study of tibiofemoral contact. The increase in coupled anterior translation in ACL-deficient knees indicates the important role played by the ACL in constraining anterior translation during compressive loading.  相似文献   

9.
The relationships between the lengths of the ligaments and kinematics of the knee and quadriceps load, for low to physiologic levels of quadriceps loads, have not previously been studied. We investigated the effects of increasing levels of quadriceps force, necessary to balance increasing levels of externally applied flexion moments, on the kinematics of the tibiofemoral joint and on the separation distances between insertions of selected fibers of the major ligaments of the knee in twelve cadavera. Static measurements were made using a six-degree-of-freedom digitizer for flexion angles ranging from 0 to 120 deg in 15 deg increments. Quadriceps generated extension of the knee was performed by applying loads to the quadriceps tendon to equilibrate each of four magnitudes of external flexion moments equivalent to 8.33, 16.67, 25.00, and 33.33 percent of values previously reported for maximum isometric extension moments. The magnitude of quadriceps force increased linearly (p < 0.0001) as external flexion moment increased throughout the entire range of flexion. Anterior translation, internal rotation, and abduction of the tibia increased linearly (p < 0.0001, p < 0.001, p < 0.001) as external flexion moment and, hence, quadriceps load increased. For the fibers studied, the anterior cruciate ligament (p < 0.0076), posterior cruciate ligament (p < 0.0001), and medial collateral ligament (p < 0.0383) lengthened linearly while the lateral collateral ligament (p < 0.0124) shortened linearly as quadriceps load increased. Based on these results for low to physiologic levels of quadriceps loads, it is reasonable to assume that the ligament lengths or knee kinematics expected with higher quadriceps loads can be extrapolated.  相似文献   

10.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

11.
The purpose of the present study was to identify kinetic responses to running on mediolaterally elevated (cross-sloped) running surfaces. Ground reaction forces (GRFs), GRF lever arms and joint moment characteristics of 19 male runners were analyzed when running at 3.5 m/s on a custom-made, tiltable runway. Tilt angles of 3° and 6° for medial and lateral elevation were analyzed using a 10 camera Vicon Nexus system and a force platform. The point of force application of the GRF showed a systematic shift in the order of 1–1.5 cm to either the lateral or medial aspect of the foot for lateral or medial inclinations, respectively. Consequently, the strongest significant effects of tilt orientation and level on joint kinetics and ground reaction force lever arms were identified at the ankle, knee and hip joint in the frontal plane of movement. External eversion moments at the ankle were significantly increased by 35% for 6° of lateral elevation and decreased by 16% for 6° of medial elevation. Altering the cross-slope of the running surface changed the pattern of ankle joint moments in the transversal plane. Effect sizes were on average larger for laterally elevated conditions, indicating a higher sensitivity of kinetic parameters to this kind of surface tilt. These alterations in joint kinetics should be considered in the choice of the running environment, especially for specific risk groups, like runners in rehabilitation processes.  相似文献   

12.

Introduction

The aim of this study was to determine the association between individual quadriceps muscle volumes and the quadriceps enthesis structures and cartilage morphology at the patellofemoral joint (PFJ).

Methods

We studied 12 cadavers (age 75 ± 5 years). For both legs, individual quadriceps muscles (vastus lateralis (VL), rectus femoris (RF), vastus intermedialis (VI) and vastus medialis (VM)) were dissected and their volumes measured. Cartilage areas at the PFJ were classified using the International Cartilage Repair Society (ICRS) score. Histological sections were evaluated at the quadriceps tendon enthesis (laterally, centrally and medially). Several variables were calculated on the binary images based on two-dimensional analysis. These were apparent bone area (BA) and apparent trabecular thickness (TH). A Spearman rank test was used to determine the strength of correlation between individual quadriceps muscles volume, the structure of the quadriceps tendon enthesis and the ICRS score.

Results

The thickness of calcified fibrocartilage tissue was significantly greater in the central part of the enthesis than both medially (P = 0.03) and laterally (P = 0.04). Uncalcified fibrocartilage was significantly thicker laterally (P = 0.04) and centrally (P = 0.02) than medially. Muscle volume was highest (P <0.05) for the VL, followed by the VI, VM and RF. There was no association between total and individual muscle volumes and ICRS or BA. However, there was a strong positive correlation (r = 0.81) between the VL/VM volume ratio and BA ratio (bone volume at the lateral part divided by bone volume at the medial part). There was a moderate positive correlation between VL/VM and ICRS (r = 0.65) and between ICRS and BA ratio (lateral/medial; r = 0.74).

Conclusions

Individual and total quadriceps volumes were not correlated with cartilage loss at the PFJ or fibrocartilage thickness. However, both VL/VM and BA ratio (lateral/medial) were positively correlated with ICRS scoring and therefore could be a tool for predicting degree of PFJ osteoarthritis severity.  相似文献   

13.
The tibiofemoral joint (TFJ) experiences large compressive articular contact loads during activities of daily living, caused by inertial, ligamentous, capsular, and most significantly musculotendon loads. Comparisons of relative contributions of individual muscles to TFJ contact loading between walking and sporting movements have not been previously examined. The purpose of this study was to determine relative contributions of individual lower-limb muscles to compressive articular loading of the medial and lateral TFJ during walking, running, and sidestepping. The medial and lateral compartments of the TFJ were loaded by a combination of medial and lateral muscles. During all gait tasks, the primary muscles loading the medial and lateral TFJ were the vastus medialis (VM) and vastus lateralis (VL) respectively during weight acceptance, while typically the medial gastrocnemii (MG) and lateral gastrocnemii (LG) dominated medial and lateral TFJ loading respectively during midstance and push off. Generally, the contribution of the quadriceps muscles were higher in running compared to walking, whereas gastrocnemii contributions were higher in walking compared to running. When comparing running and sidestepping, contributions to medial TFJ contact loading were generally higher during sidestepping while contributions to lateral TFJ contact loading were generally lower. These results suggests that after orthopaedic procedures, the VM, VL, MG and LG should be of particular rehabilitation focus to restore TFJ stability during dynamic gait tasks.  相似文献   

14.
A repeatable method for in vivo and in vitro measurement of polyethylene wear in total knee replacement (TKA) is needed. This research examines the model-based radiostereometric analysis’ (MBRSA) in vitro precision under different patient-radiograph orientations and flexion angles of the knee using a TKA phantom. Anterior–posterior and medial–lateral imaging orientations showed the highest precision; better than 0.036 mm (3-dimensional translation) and 0.089° (3-dimensional rotation). Flexion of the knee did not affect MBRSA precision. Medial–lateral imaging is advantageous as it allows for flexion of the knee joint during an RSA examination, thus providing greater information for wear measurement.  相似文献   

15.
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial–lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10° and 110° femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency.Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1° and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7° and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal–external tilt and inferior–superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.  相似文献   

16.
Kneeling is required during daily living for many patients after total knee replacement (TKR), yet many patients have reported that they cannot kneel due to pain, or avoid kneeling due to discomfort, which critically impacts quality of life and perceived success of the TKR procedure. The objective of this study was to evaluate the effect of component design on patellofemoral (PF) mechanics during a kneeling activity. A computational model to predict natural and implanted PF kinematics and bone strains after kneeling was developed and kinematics were validated with experimental cadaveric studies. PF joint kinematics and patellar bone strains were compared for implants with dome, medialized dome, and anatomic components. Due to the less conforming nature of the designs, change in sagittal plane tilt as a result of kneeling at 90° knee flexion was approximately twice as large for the medialized-dome and dome implants as the natural case or anatomic implant, which may result in additional stretching of the quadriceps. All implanted cases resulted in substantial increases in bone strains compared with the natural knee, but increased strains in different regions. The anatomic patella demonstrated increased strains inferiorly, while the dome and medialized dome showed increases centrally. An understanding of the effect of implant design on patellar mechanics during kneeling may ultimately provide guidance to component designs that reduces the likelihood of knee pain and patellar fracture during kneeling.  相似文献   

17.
The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain.  相似文献   

18.
The aim of this study was to determine the effects of anterior cruciate ligament reconstruction (ACLR) on sub-maximal quadriceps force control with respect to quadriceps and hamstring muscle activity. Thirty ACLR individuals together with 30 healthy individuals participated. With real-time visual feedback of muscle force output and electromyographic electrodes attached to the quadriceps and hamstring muscles, subjects performed an isometric knee extension task where they increased and decreased their muscle force output at 0.128 Hz within a range of 5–30% maximum voluntary capacity. The ACLR group completed the task with more error and increased medial hamstring and vastus medialis activation (p < 0.05). Moderate negative correlations (p < 0.05) were observed between quadriceps force control and medial (Spearman’s rho = −0.448, p = 0.022) and lateral (Spearman’s rho = −0.401, p = 0.034) hamstring activation in the ACLR group. Diminished quadriceps sub-maximal force control in ACLR subjects was reflective of medial quadriceps and hamstring dyskinesia (i.e., altered muscle activity patterns and coordination deficits). Within the ACLR group however, augmented hamstring co-activation was associated with better quadriceps force control. Future studies should explore the convergent validity of quadriceps force control in ACLR patients.  相似文献   

19.
Patient selection for lateral retinacular release (LRR) and its efficacy are controversial. Iatrogenic medial subluxation can occur with inappropriate LRR. The aim of this study was to determine the reduction in patellofemoral stability with progressively more extensive LRR. The force required to displace the patella 10 mm medially and laterally in nine cadaveric knees was measured with and without loading of the quadriceps and iliotibial band. The knee was tested intact, then after progressive release beginning proximal to the patella (PR), the mid-level between the proximal and distal limit of the patella (MR) where the fibres are more transverse, then distally till Gerdy's tubercle (DR) and finally the joint capsule (CR). Both medial and lateral stability decreased with progressive releases, larger for the medial. The MR caused a significant reduction of lateral stability between 30° and 90° of knee flexion. There was an 8% reduction in medial stability at 0° flexion with a complete LRR (DR). A comparable reduction in medial stability in the loaded knee at 20° and 30° flexion was obtained with MR alone, with no further reduction after DR. A capsular release caused a further reduction in medial stability at 0° and 20° and this was marked in the unloaded knee. In extension, the main lateral restraint was the joint capsule. At 30° flexion, the transverse fibres were the main contributor to the lateral restraint.  相似文献   

20.
The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号