共查询到20条相似文献,搜索用时 15 毫秒
1.
Eric Hanssen 《International journal for parasitology》2010,40(10):1127-1135
Plasmodium falciparum is a protozoan parasite that is responsible for the most pathogenic form of human malaria. The particular virulence of this parasite derives from its ability to develop within the erythrocytes of its host and to subvert their function. The intraerythrocytic parasite devours haemoglobin, and remodels its host cell to cause adhesion to blood vessel walls. Ultrastructural studies of P. falciparum have played a major role in defining its cell architecture and in resolving cell biology controversies. Here we review some of the early studies and describe some recent developments in electron microscopy techniques that have revealed information about the organization of the parasite in the blood stage of development. We present images of P. falciparum at different stages of the life cycle and highlight some of the plasmodium-specific organelles, the haemoglobin digestive apparatus and the membrane structures that are elaborated in the host cell cytoplasm to traffic virulence proteins to the erythrocyte surface. We describe methods for whole cell ultrastructural imaging that can provide three-dimensional views of intraerythrocytic development. 相似文献
2.
3.
Christinah Chiyaka Zindoga Mukandavire Prasenjit Das Senelani D. Hove-Musekwa Henry Mwambi 《Journal of theoretical biology》2010,263(2):169-178
A deterministic model for assessing the dynamics of mixed species malaria infections in a human population is presented to investigate the effects of dual infection with Plasmodium malariae and Plasmodium falciparum. Qualitative analysis of the model including positivity and boundedness is performed. In addition to the disease free equilibrium, we show that there exists a boundary equilibrium corresponding to each species. The isolation reproductive number of each species is computed as well as the reproductive number of the full model. Conditions for global stability of the disease free equilibrium as well as local stability of the boundary equilibria are derived. The model has an interior equilibrium which exists if at least one of the isolation reproductive numbers is greater than unity. Among the interesting dynamical behaviours of the model, the phenomenon of backward bifurcation where a stable boundary equilibrium coexists with a stable interior equilibrium, for a certain range of the associated invasion reproductive number less than unity is observed. Results from analysis of the model show that, when cross-immunity between the two species is weak, there is a high probability of coexistence of the two species and when cross-immunity is strong, competitive exclusion is high. Further, an increase in the reproductive number of species i increases the stability of its boundary equilibrium and its ability to invade an equilibrium of species j. Numerical simulations support our analytical conclusions and illustrate possible behaviour scenarios of the model. 相似文献
4.
Maurice Chan 《Biochemical and biophysical research communications》2004,326(1):188-196
The important role of pyruvate kinase during malarial infection has prompted the cloning of a cDNA encoding Plasmodium falciparum pyruvate kinase (pfPyrK), using mRNA from intraerythrocytic-stage malaria parasites. The full-length cDNA encodes a protein with a computed molecular weight of 55.6 kDa and an isoelectric point of 7.5. The purified recombinant pfPyrK is enzymatically active and exists as a homotetramer in its active form. The enzyme exhibits hyperbolic kinetics with respect to phosphoenolpyruvate and ADP, with Km of 0.19 and 0.12 mM, respectively. pfPyrK is not affected by fructose-1,6-bisphosphate, a general activating factor of pyruvate kinase for most species. Glucose-6-phosphate, an activator of the Toxoplasma gondii enzyme, does not affect pfPyrK activity. Similar to rabbit pyruvate kinase, pfPyrK is susceptible to inactivation by 1 mM pyridoxal-5′-phosphate, but to a lesser extent. A screen for inhibitors to pfPyrK revealed that it is markedly inhibited by ATP and citrate. Detailed kinetic analysis revealed a transition from hyperbolic to sigmoidal kinetics for PEP in the presence of citrate, as well as competitive inhibitory behavior for ATP with respect to PEP. Citrate exhibits non-competitive inhibition with respect to ADP with a Ki of 0.8 mM. In conclusion, P. falciparum expresses an active pyruvate kinase during the intraerythrocytic-stage of its developmental cycle that may play important metabolic roles during infection. 相似文献
5.
Vinay Choubey Mithu Guha Pallab Maity Sanjay Kumar Resmi Raghunandan Prakas R. Maulik Kalyan Mitra Umesh C. Halder Uday Bandyopadhyay 《Biochimica et Biophysica Acta (BBA)/General Subjects》2006
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The Km values for choline and ATP are found to be 145 ± 20 μM and 2.5 ± 0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the α and β content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity. 相似文献
6.
7.
8.
9.
Stanley C. Xie Con Dogovski Shannon Kenny Leann TilleyNectarios Klonis 《International journal for parasitology》2014
Recent reports demonstrate that failure of artemisinin-based antimalarial therapies is associated with an altered response of early blood stage Plasmodium falciparum. This has led to increased interest in the use of pulse assays that mimic clinical drug exposure for analysing artemisinin sensitivity of highly synchronised ring stage parasites. We report a methodology for the reliable execution of drug pulse assays and detail a synchronisation strategy that produces well-defined tightly synchronised ring stage cultures in a convenient time-frame. 相似文献
10.
Xuerong Li Noemi Bahamontes-Rosa Boubacar Traore Athar H. Chishti 《Biochemical and biophysical research communications》2009,380(3):454-459
The resistance of malaria parasites to current anti-malarial drugs is an issue of major concern globally. Recently we identified a Plasmodium falciparum cell membrane aspartyl protease, which binds to erythrocyte band 3, and is involved in merozoite invasion. Here we report the complete primary structure of P. falciparum signal peptide peptidase (PfSPP), and demonstrate that it is essential for parasite invasion and growth in human erythrocytes. Gene silencing suggests that PfSPP may be essential for parasite survival in human erythrocytes. Remarkably, mammalian signal peptide peptidase inhibitors (Z-LL)2-ketone and L-685,458 effectively inhibited malaria parasite invasion as well as growth in human erythrocytes. In contrast, DAPT, an inhibitor of a related γ-secretase/presenilin-1, was ineffective. Thus, SPP inhibitors specific for PfSPP may function as potent anti-malarial drugs against the blood stage malaria. 相似文献
11.
Jake Baum Julie Healer Michelle Boyle Florian Ehlgen James G. Beeson 《International journal for parasitology》2009,39(3):371-646
Invasion of erythrocytes is a prerequisite in the life history of the malaria parasite. Members of the reticulocyte-binding homologue family (PfRh) have been implicated in the invasion process and in some cases have been shown to act as adhesins, binding to specific receptors on the erythrocyte surface. We have identified a further, putatively essential, PfRh family member in the most virulent human malaria Plasmodium falciparum, called PfRh5, which binds to an unknown class of glycosylated receptors on the erythrocyte surface. This protein is an atypical PfRh family member, being much smaller than others and lacking a transmembrane and cytosolic region at the C-terminus. This suggests it may be part of a functional protein complex. PfRh5 localises to the rhoptries in merozoites and follows the tight junction during the process of erythrocyte invasion. Furthermore, rabbit immune serum raised against a portion of the ecto-domain, inhibits parasite invasion in vitro. We hypothesise an essential role for the PfRh5 adhesin in erythrocyte selection and commitment to invasion. Given its small size, we believe PfRh5 may prove to be a valuable candidate for inclusion in a multi-component anti-malarial vaccine. 相似文献
12.
Carol W. Hunja Holger Unger Pedro E. Ferreira Richard Lumsden Sheila Morris Rashid Aman Claire Alexander Toshihiro Mita Richard Culleton 《International journal for parasitology》2013
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite’s genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia. 相似文献
13.
Matthew T. O’Neill Julie Healer Alan F. Cowman 《International journal for parasitology》2011,41(1):117-123
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum. 相似文献
14.
15.
Antoine Berry Caroline Deymier Benoît Witkowski Françoise Benoit-Vical 《Experimental parasitology》2009,121(2):189-192
Mature gametocytes, the sexual stage of Plasmodium falciparum, ensure the continued transmission of malaria from the human host to the mosquito vector. Even if gametocytes are not implicated in the malaria physiopathology it is crucial to the spread of malaria. Gametocytes are to be a key target for drugs used against Plasmodium in public health. The expression levels of 4 sexual-stage specific genes, Pfs 16, Pfs 25, Pfg 27and S 18S rRNA, during gametocytogenesis of various P. falciparum strains were analyzed by a real time PCR assay. The strains showed different capacities to produce mature gametocytes and in parallel different patterns of sexual gene expression. There was a correlation only between Pfs 16 cDNA overexpression in the first 48 h of the culture and the production of mature gametocytes. Pfs 16 is an early marker of the development of mature gametocytes in cultures and is therefore a potential target for new antimalarial drugs. 相似文献
16.
Yun-Young Choi Suk-Yul Jung Pyo Yun Cho Bing Zheng Kie-In Park 《Experimental parasitology》2010,124(3):341-345
Pf-calpain, a cysteine protease of Plasmodium falciparum, is believed to be one of the central mediators for essential parasitic activity. However, the roles of calpain on parasitic activity have not been determined in P. falciparum. In the present study, the localization of Pf-calpain was investigated using polyclonal antibodies (anti-Pf-calpain antibody A and B) against peptides that distinguished it from human calpain-7 and rat calpain-10 protein. Recombinant Pf-calpain (rPf-calpain) was identified as a 46 kDa protein using an anti-Pf-calpain antibody A, which can recognize the Pf-calpain binding site. Confocal microscopy revealed calpain within cytoplasmic localized parasites in the erythrocytic cycle. The findings suggested that the expression of Pf-calpain would be proportional to all different parasites in the erythrocytic cycle. On the other hand, anti-human calpain-7 antibody detected Pf-calpain in schizonts, and the immunofluorescence was stronger than with anti-rat calpain-10 antibody. However, the antibodies reacted with calpains in human red blood cells. These results show that anti-Pf-calpain antibody A and B specifically recognize only Pf-calpain. Taken together, the results suggest that Pf-calpain is expressed in all erythrocytic stages. In particular, the expression of Pf-calpain is increased much more when the late ring matures into the early trophozoite. Moreover, anti-Pf-calpain antibody A and B against synthetic peptides of the catalytic domain of Pf-calpain are useful to specifically detect Pf-calpain in all erythrocytic stages, while human and rat calpain antibody are not useful. 相似文献
17.
Aminatou Kone Rianne Siebelink-Stoter Antoine Dara Adrian Luty Robert Sauerwein 《International journal for parasitology》2010,40(10):1221-1228
Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodiumfalciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in SP treated individuals. However, using a direct feeding assay in Mali, we showed that gametocytes present in peripheral venous blood post-SP treatment had reduced infectivity for Anophelesgambiae sensu stricto (ss) mosquitoes. We investigated the potential mechanisms involved in the dhfr and dhps quintuple mutant NF-135 and the single dhps 437 mutant NF-54. Concentrations of sulfadoxine (S) and pyrimethamine (P) equivalent to the serum levels of the respective drugs on day 3 (S = 61 μg/ml, P = 154.7 ng/ml) day 7 (S = 33.8 μg/ml, P = 66.6 ng/ml) and day 14 (S = 14.2 μg/ml, P = 15.7 ng/ml) post-SP treatment were used to study the effect on gametocytogenesis, gametocyte maturation and infectivity to Anophelesstephensi mosquitoes fed through an artificial membrane. The drugs readily induced gametocytogenesis in the mutant NF-135 strain but effectively killed the wild-type NF-54. However, both drugs impaired gametocyte maturation yielding odd-shaped non-exflagellating mature gametocytes. The concomitant ingestion of both S and P together with gametocytemic blood-meal significantly reduced the prevalence of oocyst positivity as well as oocyst density when compared to controls (P < 0.001). In addition, day 3 concentrations of SP decreased mosquito survival by up to 65% (P < 0.001). This study demonstrates that SP is deleterious in vitro for gametocyte infectivity as well as mosquito survival. 相似文献
18.
Jun Miao 《Experimental parasitology》2010,126(2):198-202
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. 相似文献
19.
Madhusudan Kadekoppala 《International journal for parasitology》2010,40(10):1155-2840
The first interaction between the malaria merozoite and the red blood cell it will invade is mediated by molecules on the surface of the two cells. The Plasmodium falciparum merozoite surface protein (MSP)1 complex that contains MSP1 and two other parasite proteins, MSP6 and MSP7, is likely to be an important component in this process. This article reviews the role of the MSP1 complex in the biology of the host parasite interface with a focus on MSP7 and related proteins that are coded by gene families in each of the different Plasmodium spp. 相似文献
20.
Abdoul H. Beavogui Abdoulaye A. Djimde Aric Gregson Adama Dao Dinkorma Ouologuem Adama Sacko Aminatou Kone Mamadou Wele Stephane Picot 《International journal for parasitology》2010,40(10):1213-1220
Sulfadoxine-pyrimethamine (SP) treatment increases the rate of gametocyte carriage and selects SP resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), raising concerns of increased malaria transmission and spread of drug resistance. In a setting in Mali where SP was highly efficacious, we measured the prevalence of DHFR and DHPS mutations in P. falciparum infections with microscopy-detected gametocytes following SP treatment, and used direct feeding to assess infectivity to Anopheles gambiae sensu lato. Children and young adults presenting with uncomplicated malaria were treated with SP or chloroquine and followed for 28 days. Gametocyte carriage peaked at 67% 1 week after treatment with a single dose of SP. Those post-SP gametocytes carried significantly more DHFR and DHPS mutations than pre-treatment asexual parasites from the same population. Only 0.5% of 1728 mosquitoes fed on SP-treated gametocyte carriers developed oocysts, while 11% of 198 mosquitoes fed on chloroquine-treated gametocyte carriers were positive for oocysts. This study shows that in an area of high SP efficacy, although SP treatment sharply increased gametocyte carriage, the infectiousness of these gametocytes to the vector may be very low. Accurate and robust methods for measuring infectivity are needed to guide malaria control interventions that affect transmission. 相似文献