首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
End-organ failure is one of the major healthcare challenges in the Western world. Yet, donor organ shortage and the need for immunosuppression limit the impact of transplantation. The regeneration of whole organs could theoretically overcome these hurdles. Early milestones have been met by combining stem and progenitor cells with increasingly complex scaffold materials and culture conditions. Because the native extracellular matrix (ECM) guides organ development, repair and physiologic regeneration, it provides a promising alternative to synthetic scaffolds and a foundation for regenerative efforts. Perfusion decellularization is a novel technology that generates native ECM scaffolds with intact 3D anatomical architecture and vasculature. This review summarizes achievements to date and discusses the role of native ECM scaffolds in organ regeneration.  相似文献   

2.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and one of the most frequent types of cancer worldwide. It normally develops in patients with chronic liver disease, especially cirrhosis, although some cases without an apparent underlying liver disease have been reported. The pathogenesis of HCC is multi-factorial and complex. Hepatitis viruses are the main factors favoring the development of HCC. In fact, chronic inflammation associated with hepatitis C or B virus infection can lead to progressive liver fibrosis, cirrhosis and ultimately HCC. Chronic inflammation and liver fibrosis cause a continuous remodeling of the extracellular matrix (ECM), a dynamic process that involves several molecules including integrins and matrix processing enzymes. An increasing body of evidence indicates that ADAMs are involved in promoting tumor formation and progression of HCC. A Disintegrin And Metalloproteases (ADAMs) are a group of proteins belonging to the zinc protease superfamily. ADAMs are usually transmembrane proteins that contain disintegrin and metalloprotease domains and are, therefore, able to carry out both cell adhesion and protease activities. Soluble isoforms of ADAMs have also been discovered and characterized. In this review, we focus on the contribution of ADAM proteins to HCC tumorigenesis and cancer progression. The potential role of ADAMs as key modulators of tumor–stroma interactions during tumor progression, by means of the activities of their constituent domains, is also discussed.  相似文献   

3.
Breast cancer patients diagnosed postpartum have poor prognosis. The postpartum mammary gland undergoes tissue regression to return to the pre-pregnant state. This involution is characterized by wound healing programs known to be tumor promotional in other contexts. Previous studies have shown that mammary extracellular matrix (ECM) from nulliparous rats has tumor suppressive attributes, while mammary ECM from involuting mammary glands is promotional. In models of pregnancy-associated breast cancer, non-steroidal anti-inflammatory drug (NSAID) treatment targeted to postpartum involution inhibits tumor progression, in part by suppressing COX-2 dependent collagen deposition. Because mammary ECM proteins are coordinately regulated, NSAID treatment is anticipated to result in additional protective changes in the mammary extracellular matrix. Here, systemic NSAID treatment was utilized during postpartum involution to reduce mammary COX-2 activity. ECM was isolated from actively involuting glands of rats treated with NSAIDs and compared to ECM isolated from control-involution and nulliparous rats in 3D cell culture and xenograft assays. Compositional changes in ECM between groups were identified by proteomics. In four distinct 3D culture assays, normal and transformed mammary epithelial cells plated in NSAID-involution ECM, phenocopied cells plated in ECM from nulliparous rats rather than ECM from control-involution rats. Tumor cells mixed with NSAID-involution ECM and injected orthotopically in mice formed smaller tumors than cells mixed with control-involution ECM. Proteomic analyses identified and 3D culture assays implicated the ECM protein tenascin-C as a potential mediator of tumor progression during involution that is decreased by NSAID treatment. In summary, NSAID treatment decreases tumor-promotional attributes of postpartum involution mammary ECM.  相似文献   

4.
The extracellular matrix: a dynamic niche in cancer progression   总被引:1,自引:0,他引:1  
The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche.  相似文献   

5.
6.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.  相似文献   

7.
Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels.  相似文献   

8.
It is becoming increasingly evident that discrete genetic alterations in neoplastic cells alone cannot explain multistep carcinogenesis whereby tumor cells are able to express diverse phenotypes during the complex phases of tumor development and progression. The epigenetic model posits that the host microenvironment exerts an initial, inhibitory constraint on tumor growth that is followed by acceleration of tumor progression through complex cell–matrix interactions. This review emphasizes the epigenetic aspects of breast cancer development in light of such interactions between epithelial cells (“seed”) and the tumor microenvironment (“soil”). Our recent research findings suggest that epigenetic perturbations induced by the tumor microenvironment may play a causal role in promoting breast cancer development. It is believed that abrogation of these initiators could offer a promising therapeutic strategy.  相似文献   

9.
Model systems mimicking the extracellular matrix (ECM) have greatly helped in quantifying cell migration in three dimensions and elucidated the molecular determinants of cellular motility in morphogenesis, regeneration, and disease progression. Here we tested the suitability of proteolytically degradable synthetic poly(ethylene glycol) (PEG)-based hydrogels as an ECM model system for cell migration research and compared this designer matrix with the two well-established ECM mimetics fibrin and collagen. Three-dimensional migration of dermal fibroblasts was quantified by time-lapse microscopy and automated single-cell tracking. A broadband matrix metalloproteinase (MMP) inhibitor and tumor necrosis factor-alpha, a potent MMP-inducer in fibroblasts, were used to alter MMP regulation. We demonstrate a high sensitivity of migration in synthetic networks to both MMP modulators: inhibition led to an almost complete suppression of migration in PEG hydrogels, whereas MMP upregulation increased the fraction of migrating cells significantly. Conversely, migration in collagen and fibrin proved to be less sensitive to the above MMP modulators, as their fibrillar architecture allowed for MMP-independent migration through preexisting pores. The possibility of molecularly recapitulating key functions of the natural extracellular microenvironment and the improved protease sensitivity makes PEG hydrogels an interesting model system that allows correlation between protease activity and cell migration.  相似文献   

10.
Cancer occurs when cells acquire genomic instability and inflammation, produce abnormal levels of epigenetic factors/proteins and tumor suppressors, reprogram the energy metabolism and evade immune destruction, leading to the disruption of cell cycle/normal growth. An early event in carcinogenesis is loss of polarity and detachment from the natural basement membrane, allowing cells to form distinct three-dimensional (3D) structures that interact with each other and with the surrounding microenvironment. Although valuable information has been accumulated from traditional in vitro studies in which cells are grown on flat and hard plastic surfaces (2D culture), this culture condition does not reflect the essential features of tumor tissues. Further, fundamental understanding of cancer metastasis cannot be obtained readily from 2D studies because they lack the complex and dynamic cell–cell communications and cell–matrix interactions that occur during cancer metastasis. These shortcomings, along with lack of spatial depth and cell connectivity, limit the applicability of 2D cultures to accurate testing of pharmacologically active compounds, free or sequestered in nanoparticles. To recapitulate features of native tumor microenvironments, various biomimetic 3D tumor models have been developed to incorporate cancer and stromal cells, relevant matrix components, and biochemical and biophysical cues, into one spatially and temporally integrated system. In this article, we review recent advances in creating 3D tumor models employing tissue engineering principles. We then evaluate the utilities of these novel models for the testing of anticancer drugs and their delivery systems. We highlight the profound differences in responses from 3D in vitro tumors and conventional monolayer cultures. Overall, strategic integration of biological principles and engineering approaches will both improve understanding of tumor progression and invasion and support discovery of more personalized first line treatments for cancer patients.  相似文献   

11.
The three-dimensional (3D) cell culture model has been increasingly used to study cancer biology and screen for anticancer agents due to its close mimicry to in vivo tumor biopsies. In this study, 3D calcium(Ca)-alginate scaffolds were developed for human glioblastoma cell culture and an investigation of the responses to two anticancer agents, doxorubicin and cordycepin. Compared to the 2D monolayer culture, glioblastoma cells cultured on these 3D Ca-alginate scaffolds showed reduced cell proliferation, increased tumor spheroid formation, enhanced expression of cancer stem cell genes (CD133, SOX2, Nestin, and Musashi-1), and improved expression of differentiation potential-associated genes (GFAP and β-tubulin III). Additionally, the vascularization potential of the 3D glioblastoma cells was increased, as indicated by a higher expression of tumor angiogenesis biomarker (VEGF) than in the cells in 2D culture. To highlight the application of Ca-alginate scaffolds, the 3D glioblastomas were treated with anticancer agents, including doxorubicin and cordycepin. The results demonstrated that the 3D glioblastomas presented a greater resistance to the tested anticancer agents than that of the cells in 2D culture. In summary, the 3D Ca-alginate scaffolds for glioblastoma cells that were developed in this study offer a promising platform for anticancer agent screening and the discovery of drug-resistant mechanisms of cancer.  相似文献   

12.
Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the fibrinogen solution to remove citrates that inhibit polymerization. These detailed methods rely on fibrinogen concentrations determined to be optimal for embryonic and induced pluripotent stem cell culture. Other groups have further investigated fibrin scaffolds for a wide range of cell types and applications - demonstrating the versatility of this approach.  相似文献   

13.
Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment.  相似文献   

14.
Recreating the most critical aspects of the native extracellular matrix (ECM) is fundamental to understand and control the processes regulating cell fate and cell function. From the ill-defined complexity to the controlled simplicity, we discuss the different strategies that are being carried out by scientists worldwide to achieve the latest advances in the sophistication of three-dimensional (3D) scaffolds, stressing their impact on cell biology, tissue engineering and regenerative medicine. Synthetic and naturally derived polymers like polyethylene glycol, alginate, agarose, etc., together with micro- and nanofabrication techniques are allowing the creation of 3D models where biophysical and biochemical variables can be modified with high precision, orthogonality and even in real-time.  相似文献   

15.
Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups'' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.  相似文献   

16.
EMMPRIN has a role in invasion and metastasis through the induction of MMPs and the consequent modulation of cell-substrate and cell–cell adhesion processes. The present study evaluates the expression of EMMPRIN protein and MMP-2/9 activity in tumor and parenchymal cells in a spontaneous metastasis model in rats. Moreover, we explore the regulation of EMMPRIN and MMP-9 by tumor-epithelial cell interactions in vitro. By zymography, we observed an increased proMMP-9 expression in both metastasized liver and spleen samples from tumor bearing rats. Immunohistochemical studies showed EMMPRIN-positive tumor cells in tumor biopsies as well as in spleen and liver samples from tumor bearing rats. Interestingly, a significant increase in EMMPRIN expression in hepatic cells was also detected. The regulation of EMMPRIN expression in tumor and liver cells in response to tumor–host interaction was investigated in vitro through a tumor cell line culture on extracellular matrix (ECM) molecules or in co-culture with normal rat liver cells (BRL3A cells). No significant changes in EMMPRIN expression were detected in tumor cells cultured on ECM molecules. On the other hand, EMMPRIN protein and MMP-9 mRNA expression were induced in BRL3A cells. The increase in EMMPRIN expression in BRL3A cells was inhibited by an anti-EMMPRIN antibody. These results reinforce the main role of EMMPRIN mediating tumor–host interactions that may evolve new opportunities for therapeutic interventions.  相似文献   

17.
In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze‐drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers.  相似文献   

18.
There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.  相似文献   

19.
Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.  相似文献   

20.
Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号