首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enucleation of animal cells in which nuclear fragmentation (micronucleation) has been induced by treatment with mitotic inhibitors results in the formation of subdiploid microcells consisting of one or several micronuclei, some cytoplasm and surrounded by a plasma membrane. Microcells were prepared from rat kangaroo cells (12 chromosomes) and a polyoma virus transformed mouse cell line (61 chromosomes) and analysed for DNA content. Microspectrophotometric DNA measurements and the appearance of micronuclei at mitosis show that small micronuclei contain genetic information equivalent to single chromosomes. A large proportion of the micronuclei and the microcells, however, contains DNA corresponding to several chromosomes. Heterogeneous mixtures of microcells can be fractionated by a unit gravity sedimentation procedure so as to isolate the small microcells. These can afterwards be fused with intact normal or mutant cells.  相似文献   

2.
Several lines of evidences from us or other authors had shown that tumor cells revert their phenotypes and differentiate by the elimination of oncogenes amplified on the acentric double minutes (DMs). The selective incorporation of DMs into the cytoplasmic micronuclei was thought to be involved in this elimination, however, the mechanism by which the content of micronuclei was eliminated from the cells remains to be discovered. In this report, we show the finding and the characterization of the extruded micronuclei in the culture fluid of human COLO 320DM tumor line, and suggest that the extrusion of micronuclei mediates the selective elimination of DMs. The extracellular micronuclei enriched with DMs had an apparently normal cytoplasmic membrane, decondensed chromatin and nuclear lamin protein, and their DNA did not suffer any extensive degradation. These characteristics were closely related to their cytoplasmic counterpart and clearly differentiated from the apoptotic bodies. We also developed a method for purifying the extracellular micronuclei. In this paper, the implications of the micronuclear extrusion are discussed.  相似文献   

3.
X-rays induce various DNA damages including strand breaks that lead to formation of micronuclei and chromosomal aberrations as well as increased number of apoptotic cells. Similar effects appear when non-irradiated cells are treated with medium collected from cultures of irradiated cells (irradiation conditioned medium - ICM). This phenomenon was termed "bystander effect". A number of studies suggest that bystander effect appears to be associated with up-regulation of oxidative metabolism. We thus compared the effects of antioxidant Vitamins C and E on the frequency of micronuclei and apoptotic cells in both directly irradiated cell cultures and in cultures exposed to ICM. Addition of Vitamins C or E (1-40 microg/ml) to culture medium after exposure to radiation or ICM reduced the frequency of micronuclei in a concentration-dependent manner. These vitamins had no effect on cell viability, clonogenic survival or the frequency of apoptotic cells under both conditions tested. These results show that the bystander effect causes micronucleation in addition to other known effects and suggest that the factors causing micronucleation by X-irradiation, oxidative DNA damage and incomplete repair, are regulated by apoptosis-independent pathways.  相似文献   

4.
In the present study, we demonstrate the existence of two distinct apoptotic patterns in nurse cells during Ceratitis capitata oogenesis. One is developmentally regulated and normally occurs during stages 12 and 13, and the other is stage specific and is sporadically observed during stages 7 and 8. The pre-apoptotic manifestation of the first pattern begins at stage 11 and is characterized by the formation of actin bundles. Subsequently, at stages 12 and 13, the nurse cell nuclei exhibit condensed chromatin and contain fragmented DNA, as revealed by TUNEL assay. The apoptotic nurse cell remnants are phagocytosed by the neighboring follicle cells at the end of oogenesis during stages 13 and 14. In the second apoptotic pattern, which occurs sporadically during stages 7 and 8, the nurse cells degenerate and are phagocytosed by the follicular epithelium that contains apoptotic cell bodies. The data presented herein, compared to previous reported results in Drosophila melanogaster and Dacus oleae (Nezis et al., 2000, 2001), strongly suggest that nurse cell apoptosis is a developmentally regulated and phylogenetically conserved mechanism in higher Dipteran. They also suggest that, the sporadic apoptotic pattern consists of a possible protective mechanism throughout oogenesis when damaged or abnormal egg chambers, are eliminated before they reach maturity.  相似文献   

5.
The mammalian Rad51 protein is involved in homologous recombination and in DNA damage repair. Its nuclear distribution after DNA damage is highly dynamic, and distinct foci of Rad51 protein, distributed throughout the nuclear volume, are induced within a few hours after γ irradiation; these foci then coalesce into larger clusters. Rad51-positive cells do not undergo DNA replication. Rad51 foci colocalize with both replication protein A and sites of unscheduled DNA repair synthesis and may represent a nuclear domain for recombinational DNA repair. By 24 h postirradiation, most foci are sequestered into micronuclei or assembled into Rad51-coated DNA fibers. These micronuclei and DNA fibers display genome fragmentation typical of apoptotic cell death. Other repair proteins, such as Rad52 and Gadd45, are not eliminated from the nucleus. DNA double strand breaks in repair-deficient cells or induced by the clastogen etoposide are also accompanied by the sequestering of Rad51 protein before cell death. The spindle poison colcemid causes cell cycle arrest and Rad51-foci formation without directly damaging DNA. Collectively, these observations suggest that mammalian Rad51 protein associates with damaged DNA and/or with DNA that is temporarily or irreversibly unable to replicate and these foci may subsequently be eliminated from the nucleus.  相似文献   

6.
7.
微细胞介导的染色体转移技术(MMCT)是一项将外源染色体转入哺乳动物细胞的技术,具有广阔的应用前景.与体细胞核移植技术结合,MMCT可用于生产具有重要医学药用价值和优良农业生产性状的转染色体动物.制备高质量的微细胞是关系MMCT技术成功的关键步骤之一.通过荧光染色和吉姆萨染色分析,结果表明,A9(neo12)细胞经0.2mg/L秋水仙素酰胺处理48h后,89%的细胞产生微核化,每个细胞平均形成10个微核.微核化的细胞在含有20mg/L细胞松弛B的Percoll密度梯度介质中,经39000g高速离心后,包含微细胞、完整细胞、细胞核和细胞碎片的混合液,依次通过8μm和5μm孔径的滤膜过滤后可获得纯化的微细胞溶液.通过光学显微镜和吉姆萨染色观察,可见微细胞为一群直径约为3~5μm的类细胞核的球形物质.微细胞PCR技术首次用于检测微细胞溶液的质量,检测结果显示,所制备的溶液中均匀分布着带有目的染色体的微细胞,适用于进一步作转染色体动物实验.  相似文献   

8.
In this study the role of hyperthermia as an apoptotic trigger was analyzed in four human tumor cell lines: HL60, U937, DOHH2, and K562. These cell lines were chosen because of their well known and different expression of bcl-2 and bcr-abl genes, the expression of which is known to be an antiapoptotic condition. HL60 and U937 cells were strongly susceptible to heat exposure, while DOHH2 cells were weakly sensitive and K562 cells were resistant, thus suggesting a possible gene involvement in this type of programmed cell death. The mechanisms underlying this apoptosis were investigated by flow cytometry, agarose gel electrophoresis, and light and electron microscopy. A subdiploid peak and DNA laddering, both of which are parameters specifically correlated to programmed cell death, were present in HL60 and U937 and, even if less evident, in DOHH2 cells undergoing hyperthermic treatment, and were absent in K562 cells. In addition, DNA single-strand cleavage was revealed by in situ nick translation, observed by confocal microscopy. Morphological analysis confirmed these results and revealed the typical chromatin changes, followed by the appearance of micronuclei and apoptotic bodies. Accepted: 26 November 1999  相似文献   

9.
We have previously shown that DNA from dying tumor cells may be transferred to living cells via the uptake of apoptotic bodies and may contribute to tumor progression. DNA encoding H-ras(V12) and c-myc oncogenes may be transferred to the nucleus of the phagocyte but will only integrate and propagate in p53- and p21-deficient mouse embryonic fibroblasts, whereas normal cells are resistant to transformation. Here, we show that this protective mechanism (activation of p53 and p21 after uptake of apoptotic bodies) is dependent on DNA fragmentation, where inhibition of the caspase-activated DNase in the apoptotic cells, in conjunction with genetic ablation of lysosomal DNase II in the phagocytes, completely blocks p53 activation and consequently allows DNA replication of transferred DNA. We, therefore, suggest that there is a causal relationship between DNA degradation during apoptosis and p53 activation. In addition, we could further show that Chk2-/- cells were capable of replicating the hyg(R) gene taken up from engulfed apoptotic cells, suggesting involvement of the DNA damage response. These data show that the phagocytosing cell is sensing the degraded DNA within the apoptotic cell, hence preventing these genes from being replicated, probably through activation of the DNA damage response. We, therefore, hypothesize that DNase II together with the Chk2, p53, and p21 pathway form a genetic barrier blocking the replication of potentially harmful DNA introduced via apoptotic bodies, thereby preventing transformation and malignant development.  相似文献   

10.
Summary An established Chinese hamster cell line was fused with microcells isolated from phenotypically stable transferent mouse cells which contained a mouse transgenome coding for an abnormal form of mouse hypoxanthine phosphoribosyltransferase (HPRT, EC. No. 2.4.2.8) (Willecke et al. 1979). Two hybrids were isolated which expressed the abnormal form of mouse HPRT but no mouse -galactosidase (GALA, EC. No. 3.2.1.22). In one of these microcell hybrids the abnormal HPRT activity segregated under counter-selective conditions with mouse chromosome 3. No mouse chromosome or additional mouse gene marker was found in the second microcell hybrid, possibly because of breakage and/or rearrangement of the integrated transgenome during the isolation of this hybrid. We conclude from these results that the transferred mouse HPRT gene in a phenotypically stable clone is not integrated at its homologous site on the host X chromosome. Rather, the transgenome is probably integrated into mouse chromosome 3, possibly due to homologies in repeated DNA sequences which may occur in the transgenome and which are interspersed at many sites in the host genome.  相似文献   

11.
The cell death and survival of proliferating (clonogenic) cells were investigated in two human melanoma cell lines to assess the optimal conditions for preparation of apoptotic bodies from melanoma cells. After 50 J/m2 UVB+UVC the maximal levels of apoptotic cells assayed by Trypan blue staining, nucleosomal DNA fragmentation, MTT, and TUNEL tests were observed within 2-3 d of radiation. In 100 Gy gamma-irradiated cultures these apoptosis indicators were delayed for up to 3 weeks. In addition, clonogenic cells were observed only in exponentially growing cultures irradiated with UV at high cell density but not in gamma-irradiated cultures. The response of melanoma cultures after high UV radiation doses contrasted to the response in lethally gamma-irradiated cultures. UV-irradiated melanoma cultures were recovered within two weeks. Most of the clonogenic cells in the recovered colonies contained micronuclei. ROS levels determined by DCF fluorescence and a modified MTT test were also normalized obviously due to the extensive antioxidant defense system of melanoma cells. UV radiation of tumor cells might be the preferential method for preparation of apoptotic bodies. The presence of clonogenic cells in the suspension of apoptotic bodies from melanoma cells used for pulsing of dendritic cells with tumor antigens might compromise this protocol for preparation of cell vaccines.  相似文献   

12.
Microcell production by means of Colcemid-induced micronucleation and subsequent enucleation with the density gradient technique was adjusted for use with the murine T-lymphoma line ESb-M. Modification of the standard protocol for a cell type on which no experiments had previously been performed required careful monitoring of the multiple steps in the procedure in order to optimize the final microcell yield. Traditional microscopic verification may sometimes be ambiguous, due to the lack of a clear cutoff point between small whole cells and cell fragments; in these conditions, the level of variability increases, thus impairing quantitative estimations. Flow cytometric (FCM) analysis of DNA content and size of donor cells and microcells was therefore applied in parallel to provide additional quantitative information. The FCM results supplemented the microscopic data in assessing which fraction recovered from the gradient has the lowest percentage of contaminant whole cells; however, FCM analysis may provide more statistically significant data due to the large size of the sample examined. Moreover, FCM is of prospective use in providing the basis for subsequent sorting of either pure microcells or specific subpopulations of defined DNA content and size.  相似文献   

13.
14.
The in vivo time course of the morphological changes and DNA degradation in castration-induced apoptotic prostate cells was studied from the earliest to the latest stage of the degeneration process. To study this problem, we first induced apoptotic prostate cells in rats by castration for 3 days and then promptly and continuously blocked the death of healthy prostatic cells in the castrated rats by in vivo testosterone replacement. Because testosterone replacement could not stop the irreversible lysis of already damaged prostate cells, apoptotic cells at different stages of the degeneration process were eliminated sequentially from the prostate after the healthy prostate cells had been protected. Prostate cells at the earliest stage of apoptosis at the time when the castrated rats received testosterone replacement disappeared last. By tracing the morphological and DNA degradation of apoptotic cells after hormone treatment, we estimated the time course of prostate cell death from the early to the final stage. In the morphological evolution of apoptotic prostate cells, the clumping of nuclear chromatin, the degeneration of cytoplasm and the involution of the cell surface occurred and progressed simultaneously, resulting in the rapid formation of apoptotic bodies that were gradually digested by other cells. The DNA ladders of apoptotic cells were progressively cleaved into a mononucleosomal subunit that was further degraded at an additional site, generating a heterogeneous population of small nucleotides. The final digestion of DNA fragments occurred within the apoptotic bodies. The whole course of prostate cell death after castration took about 44 h.  相似文献   

15.
Impact of the comet assay in radiobiology   总被引:1,自引:0,他引:1  
Until the development of single cell gel electrophoresis methods in the 1980s, measurement of radiation-induced DNA strand breaks in individual cells was limited to detection of micronuclei or chromosome breaks that measured the combined effects of exposure and repair. Development of methods to measure the extent of migration of DNA from single cells permitted detection of initial radiation-induced DNA breaks present in each cell. As cells need not be radiolabeled, there were new opportunities for analysis of radiation effects on cells from virtually any tissue, provided a single cell suspension could be prepared. The comet assay (as this method was subsequently named) was able to measure, for the first time, the fraction of radiobiologically hypoxic cells in mouse and human tumors. It was used to determine that the rate of rejoining of DNA breaks was relatively homogenous within an irradiated population of cells. Because individual cells were analyzed, heavily damaged or apoptotic cells could be identified and eliminated from analysis to determine "true" DNA strand break rejoining rates. Other examples of applications of the comet assay in radiobiology research include analysis of the inter-individual differences in response to radiation, effect of hypoxia modifying agents on tumor hypoxic fraction, the role of cell cycle position during DNA break induction and rejoining, non-targeted effects on bystander cells, and effects of charged particles on DNA fragmentation patterns.  相似文献   

16.
We searched for a human chromosome that would restore the cholesterol metabolism in 3T3 cell lines (SPM-3T3) derived from homozygous sphingomyelinosis mice (spm/spm). Mouse A9 cells containing a single copy of pSV2neo-tagged chromosomes 9, 11, or 18 derived from normal human fibroblasts served as donor cells for transfer of human chromosomes. Purified A9 microcells were fused with SPM-3T3 cells, and the microcell hybrids were selected in medium containing G418 antibiotics. The microcell hybrids that contained human chromosomes 9, 11, or 18 in a majority of cells were examined. The accumulation of intracellular cholesterol in the microcell hybrids containing a chromosome 18 decreased markedly, whereas in the microcell hybrids containing either chromosomes 9 or 11 it was similar to that in SPM3T3 cells. The SPM-3T3 cells with an intact chromosome 18 were further passaged and subcloned. Clones which again accumulated intracellular cholesterol had concurrently lost the introduced chromosome 18. The abnormal accumulation was associated with a decrement in the esterification of exogenous cholesterol. These findings suggest that the gene responsible for the abnormal cholesterol metabolism in the spm/spm mice can be restored by a hu man chromosome 18. The gene was tentatively mapped on 18pter18p11.3 or 18q21.3qter that was lost during subcloning, thereby resulting in reaccumulation of the intracellular cholesterol.  相似文献   

17.
Microcell-mediated chromosome transfer (MMCT) technology enables a single and intact mammalian chromosome or megabase-sized chromosome fragments to be transferred from donor to recipient cells. The conventional MMCT method is performed immediately after the purification of microcells. The timing of the isolation of microcells and the preparation of recipient cells is very important. Thus, ready-made microcells can improve and simplify the process of MMCT. Here, we established a cryopreservation method to store microcells at −80 °C, and compared these cells with conventionally- (immediately-) prepared cells with respect to the efficiency of MMCT and the stability of a human artificial chromosome (HAC) transferred to human HT1080 cells. The HAC transfer in microcell hybrids was confirmed by FISH analysis. There was no significant difference between the two methods regarding chromosome transfer efficiency and the retention rate of HAC. Thus, cryopreservation of ready-to-use microcells provides an improved and simplified protocol for MMCT.  相似文献   

18.
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.  相似文献   

19.
Zearalenone (ZEN) is a fusarotoxin produced mainly by Fusarium graminearum in temperate and warm countries. ZEN has several adverse effects on humans and animals. It has a strong estrogenic activity associated with hyperestrogenism and leads to several physiological alterations in the reproductive tract. Even though the mutagenic and genotoxic proprieties of ZEN have been described recently, its molecular mechanisms of action are not completely understood. The aim of this study was to determine the involvement of other possible mechanisms in ZEN-induced toxicities. Each of the following toxicities, cytotoxicity, cell cycle perturbation, genotoxicity, and mutagenicity, was monitored in Vero cells exposed to ZEN. Our results showed that ZEN-reduced cell viability correlated to cell cycle perturbation-induced DNA fragmentation, resulting in DNA-laddering patterns on agar gel electrophoresis. This observation is consistent with apoptosis, which was confirmed by induction of apoptotic bodies. Moreover, ZEN induced in a concentration-dependant manner the formation of micronuclei and chromosome aberrations. This apparent contradiction between the apoptotic and mutagenic effects of ZEN can be explained by the modification of normal cellular regulation inducing apoptotic or antiapoptotic factors resulting from a lack of or an incorrect DNA-reparation in relation to cell exposure to the toxin.  相似文献   

20.
One of the key features associated with programmed cell death in many tissues is the phagocytosis of apoptotic bodies by macrophages. Removal of apoptotic cells occurs before their lysis, indicating that these cells, during the development of apoptosis, express specific surface changes recognized by macrophages. We have compared the mechanisms by which four different macrophage populations recognize apoptotic cells. Murine macrophages elicited into the peritoneal cavity with either of two different phlogistic agents were able to phagocytose apoptotic cells. This phagocytosis was inhibited by phosphatidylserine (PS), regardless of the species (human or murine) or type (lymphocyte or neutrophil) of the apoptotic cell. In contrast, the murine bone marrow macrophage, like the human monocyte-derived macrophage, utilized the vitronectin receptor, an alpha v beta 3 integrin, for the removal of apoptotic cells, regardless of their species or type. That human macrophages are capable, under some circumstances, of recognizing PS on apoptotic cells was suggested by the observation that PS liposomes inhibited phagocytosis by phorbol ester-treated THP-1 cells. These results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophages studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号