首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Deng W  Lin BY  Jin G  Wheeler CG  Ma T  Harper JW  Broker TR  Chow LT 《Journal of virology》2004,78(24):13954-13965
Cyclin-dependent kinases (CDKs) play key roles in eukaryotic DNA replication and cell cycle progression. Phosphorylation of components of the preinitiation complex activates replication and prevents reinitiation. One mechanism is mediated by nuclear export of critical proteins. Human papillomavirus (HPV) DNA replication requires cellular machinery in addition to the viral replicative DNA helicase E1 and origin recognition protein E2. E1 phosphorylation by cyclin/CDK is critical for efficient viral DNA replication. We now show that E1 is phosphorylated by CDKs in vivo and that phosphorylation regulates its nucleocytoplasmic localization. We identified a conserved regulatory region for localization which contains a dominant leucine-rich nuclear export sequence (NES), the previously defined cyclin binding motif, three serine residues that are CDK substrates, and a putative bipartite nuclear localization sequence. We show that E1 is exported from the nucleus by a CRM1-dependent mechanism unless the NES is inactivated by CDK phosphorylation. Replication activities of E1 phosphorylation site mutations are reduced and correlate inversely with their increased cytoplasmic localization. Nuclear localization and replication activities of most of these mutations are enhanced or restored by mutations in the NES. Collectively, our data demonstrate that CDK phosphorylation controls E1 nuclear localization to support viral DNA amplification. Thus, HPV adopts and adapts the cellular regulatory mechanism to complete its reproductive program.  相似文献   

2.
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.  相似文献   

3.
SCF-type E3 ubiquitin ligases are crucial regulators of cell cycle progression. As the F-box protein is the substrate-specifying subunit of this family of ligases, their availability dictates the timing and the location of the ubiquitination of substrates. We report here our investigation into the regulation of the localization of F-box proteins, in particular Fbxo7, whose mislocalization is associated with human disease. We identified a motif in Fbxo7 that we have characterized as a functional leucine-rich nuclear export sequence (NES), and which allowed binding to the nuclear export protein, exportin 1 (CRM1). Unusually, the NES was embedded within the F-box domain, which is bound by Skp1 and enables the F-box protein to form part of an E3 ubiquitin ligase. The NES of Fbxo7 controlled its localization and was conserved in Fbxo7 homologues in other species. Skp1 binding prevented Fbxo7 from contacting CRM1. We propose that this competitive binding allowed Fbxo7 to accumulate within the nucleus starting at the G1/S transition. More than ten other F-box proteins also contain an NES at the same location in their F-box domains, indicating that this competitive binding mechanism may contribute to the regulation of a sixth of the known F-box proteins.  相似文献   

4.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases of the Clb/Cdc28 family restrict the initiation of DNA replication to once per cell cycle by preventing the re-assembly of pre-replicative complexes (pre-RCs) at replication origins that have already initiated replication. This assembly involves the Cdc6-dependent loading of six minichromosome maintenance (Mcm) proteins, Mcm2-7, onto origins. How Clb/Cdc28 kinases prevent pre-RC assembly is not understood. RESULTS: In living cells, the Mcm proteins were found to colocalize in a cell-cycle-regulated manner. Mcm2-4, 6 and 7 were concentrated in the nucleus in G1 phase, gradually exported to the cytoplasm during S phase, and excluded from the nucleus by G2 and M phase. Tagging any single Mcm protein with the SV40 nuclear localization signal made all Mcm proteins constitutively nuclear. In the absence of functional Cdc6, Clb/Cdc28 kinases were necessary and sufficient for efficient net nuclear export of a fusion protein between Mcm7 and the green fluorescent protein (Mcm7-GFP), whereas inactivation of these kinases at the end of mitosis coincided with the net nuclear import of Mcm7-GFP. In contrast, in the presence of functional Cdc6, which loads Mcm proteins onto chromatin, S-phase progression as well as Clb/Cdc28 kinases was required for Mcm-GFP export. CONCLUSIONS: We propose that Clb/Cdc28 kinases prevent pre-RC reassembly in part by promoting the net nuclear export of Mcm proteins. We further propose that Mcm proteins become refractory to this regulation when they load onto chromatin and must be dislodged by DNA replication before they can be exported. Such an arrangement could ensure that Mcm proteins complete their replication function before they are removed from the nucleus.  相似文献   

5.
Ectopically expressed Cdc6 is translocated from the nucleus during S phase in a cyclin A-Cdk2-dependent process, suggesting that reinitiation of DNA replication is prevented by removal of phosphorylated Cdc6 from chromatin after origin firing. However, whether endogenous Cdc6 translocates during S phase remains controversial. To resolve the questions regarding regulation of endogenous Cdc6, we cloned the cDNA encoding the Chinese hamster Cdc6 homolog and specifically focused on analyzing the localizations and chromatin affinities of endogenous and exogenous proteins during S phase and following overexpression of cyclin A. In agreement with other reports, ectopically expressed Cdc6 translocates from the nucleus during S phase and in response to overexpressed cyclin A. In contrast, using a combination of biochemical and immunohistochemical assays, we show convincingly that endogenous Cdc6 remains nuclear and chromatin bound throughout the entire S period, while Mcm5 loses chromatin affinity during S phase. Overexpression of cyclin A is unable to alter the nuclear localization of Cdc6. Furthermore, using a phosphospecific antibody we show that phosphoserine-54 Cdc6 maintains a high affinity for chromatin during the S period. Considering recent in vitro studies, these data are consistent with a proposed model in which Cdc6 is serine-54 phosphorylated during S phase and functions as a chromatin-bound signal that prevents reformation of prereplication complexes.  相似文献   

6.
M Cou  S E Kearsey    M Mchali 《The EMBO journal》1996,15(5):1085-1097
A Xenopus homologue of Schizosaccharomyces pombe cdc21 has been characterized as a new member of the MCM family of proteins. The cdc21 protein exhibits cell-cycle dependent chromatin binding and phosphorylation in association with S-phase control. Cdc21 binds to decondensing chromatin at the end of mitosis, localizing to numerous foci which form prior to reconstitution of the nuclear membrane. The association of cdc21 with chromatin occurs in membrane-free high speed extracts and is resistant to detergent extraction. The spatial organization of the cdc21 foci resembles that of pre-replication centres though no co-localization with RP-A was observed. Cdc21 remains bound to chromatin during the initiation of DNA replication and is displaced as the DNA replication forks progress. These subnuclear changes in localization correlate with cell-cycle-regulated changes in phosphorylation. Cdc21 binds to chromatin in an underphosphorylated state, but in early S phase the nuclear localized cdc21 is partially phosphorylated before it is displaced from the chromatin. Cytoplasmic cdc21 remains underphosphorylated but at the beginning of mitosis the entire pool of cdc21 is hyperphosphorylated, possibly by the cdc2/cyclin B kinase. These properties identify Xenopus cdc21 as a possible component of the DNA licensing factor.  相似文献   

7.
The Rev protein is essential for the replication of lentiviruses. Rev is a shuttling protein that transports unspliced and partially spliced lentiviral RNAs from the nucleus to the cytoplasm via the nucleopore. To transport these RNAs, the human immunodeficiency virus type 1 (HIV-1) Rev uses the karyopherin β family importin β and CRM1 proteins that interact with the Rev nuclear localization signal (NLS) and nuclear exportation signal (NES), respectively. Recently, we reported the presence of new types of bipartite NLS and nucleolar localization signal (NoLS) in the bovine immunodeficiency virus (BIV) Rev protein. Here we report the characterization of the nuclear import and export pathways of BIV Rev. By using an in vitro nuclear import assay, we showed that BIV Rev is transported into the nucleus by a cytosolic and energy-dependent importin α/β classical pathway. Results from glutathione S-transferase (GST) pulldown assays that showed the binding of BIV Rev with importins α3 and α5 were in agreement with those from the nuclear import assay. We also identified a leptomycin B-sensitive NES in BIV Rev, which indicates that the protein is exported via CRM1 like HIV-1 Rev. Mutagenesis experiments showed that the BIV Rev NES maps between amino acids 109 to 121 of the protein. Remarkably, the BIV Rev NES was found to be of the cyclic AMP (cAMP)-dependent protein kinase inhibitor (PKI) type instead of the HIV-1 Rev type. In summary, our data showed that the nuclear import mechanism of BIV Rev is novel among Rev proteins characterized so far in lentiviruses.  相似文献   

8.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

9.
Mcm2–7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2–7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involvement of ATM/ATR-dependent checkpoint pathways. DNA replication is arrested specifically after chromatin binding of Cdc7, but before Cdk2-dependent pathways and deregulating Cdc6 after this step does not impair activation of origin firing or elongation. Detailed analyses revealed that Cdc6 deregulation leads to strong suppression of Cdc7-mediated hyperphosphorylation of Mcm4 and subsequent chromatin loading of Cdc45, Sld5 and DNA polymerase α. Mcm2 phosphorylation is also repressed although to a lesser extent. Remarkably, Cdc6 itself does not directly inhibit Cdc7 kinase activity towards Mcm2–4–6–7 in purified systems, rather modulates Mcm2–7 phosphorylation on chromatin context. Taken together, we propose that Cdc6 on chromatin acts as a modulator of Cdc7-mediated phosphorylation of Mcm2–7, and thus destabilization of Cdc6 from chromatin after licensing is a key event ensuring proper transition to the initiation of DNA replication.  相似文献   

10.
Cyclin E-associated CDK2 activity is required for the initiation of DNA synthesis in human cells. CDK2 activity is tightly regulated; CDK2 must be in the nucleus, bound to a cyclin, phosphorylated on T160, and dephosphorylated on T14/Y15 for complete kinase activation. Nuclear localization exposes CDK2 to activating enzymes (CAK, Cdc25A) in stimulated cells. Previous studies from our lab indicate CDK2 nuclear localization and cyclin E co-expression are insufficient to cause CDK2 activation or T160 phosphorylation in stimulated IIC9 cells; these activities still require serum stimulation and ERK kinase activity. Recent studies have implicated a role for origin of replication (ORC) licensing proteins in the activation of G1/S Cdks. In this study, we show that CDK2 associates with chromatin and Cdc6 in an ERK-dependent manner following stimulation of IIC9 CHEF cells. We show that nuclear-localized CDK2 (CDK2-NLS) ectopically expressed with cyclin E requires mitogenic stimulation and ERK activation for chromatin association, in addition to previously shown kinase activation and T160 phosphorylation in IIC9 cells. Additionally, we show that expression of Cdc6 in stimulated IIC9 cells treated with ERK inhibitor rescues CDK2-NLS chromatin association, kinase activation, and T160 phosphorylation. From the above data, we deduce ERK-dependent CDK2 activation is due in part to ERK-dependent Cdc6 expression. To examine the role of Cdc6 directly in stimulated primary human fibroblasts, we used RNA interference to attenuate the expression of Cdc6. We show that Cdc6 expression is required for CDK2 chromatin association and kinase activation in stimulated primary human fibroblasts. Additionally, we show that Cdc6 expression is required for the initiation of DNA synthesis and S phase entry in stimulated primary human fibroblasts. Ultimately, this data implicates Cdc6 expression as an important mitogen-induced mechanism in the activation of CDK2/cyclin E, the initiation of DNA synthesis, and the regulation of G1-S phase progression.  相似文献   

11.
12.
The Cdc7 kinase is essential for the initiation of DNA replication in eukaryotes. Two regulatory subunits of the Xenopus Cdc7 kinase have been identified: XDbf4 and XDrf1. In this study we determined the expression pattern of XDbf4 and XDrf1 and examined their involvement in DNA replication. We show that XDrf1 expression is restricted to oogenesis and early embryos, whereas XDbf4 is expressed throughout development. Immunodepletion from Xenopus egg extracts indicated that both proteins are only found in complexes with XCdc7 and there is a 5-fold molar excess of the XCdc7/Drf1 over SCdc7/Dbf4 complexes. Both complexes exhibit kinase activity and are differentially phosphorylated during the cell cycle. Depletion of the XCdc7/Drf1 from egg extracts inhibited DNA replication, whereas depletion of XCdc7/Dbf4 had little effect. Chromatin binding studies indicated that XCdc7/Drf1 is required for pre-replication complex activation but not their assembly. XCdc7/Dbf4 complexes bound to the chromatin in two steps: the first step was independent of pre-replication complex assembly and the second step was dependent on pre-replication complex activation. By contrast, binding of XCdc7/Drf1 complexes was entirely dependent on pre-replication complex assembly. Finally, we present evidence that the association of the two complexes on the chromatin is not regulated by ATR checkpoint pathways that result from DNA replication blocks. These data suggest that Cdc7/Drf1 but not Cdc7/Dbf4 complexes support the initiation of DNA replication in Xenopus egg extracts and during early embryonic development.  相似文献   

13.
The coordination of chromatin assembly with DNA replication, which is essential for genomic stability, requires the combined activation of histone deposition with the firing of replication origins. We report here the direct interaction of chromatin assembly factor 1 (CAF1), a key factor involved in histone deposition, with the replication kinase Cdc7-Dbf4. We isolated a complex containing both the largest subunit of CAF1 (p150) and the Cdc7-Dbf4 kinase specifically in S phase and thus prove the existence of this interaction in vivo. We then show that the Cdc7-Dbf4 kinase efficiently phosphorylates p150. This event induces a change in p150 oligomerization state, which promotes binding to proliferating cell nuclear antigen (PCNA). Conversely, CAF1 recruitment is reduced in a PCNA/DNA loading assay using Cdc7-depleted extracts. Our data define p150 as a new target for this kinase with implications for the coordination between DNA replication and CAF1 functions.  相似文献   

14.
15.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

16.
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.  相似文献   

17.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

18.
Using a cytological assay to monitor the successive chromatin association of replication proteins leading to replication initiation, we have investigated the function of fission yeast Cdc23/Mcm10 in DNA replication. Inactivation of Cdc23 before replication initiation using tight degron mutations has no effect on Mcm2 chromatin association, and thus pre-replicative complex (pre-RC) formation, although Cdc45 chromatin binding is blocked. Inactivating Cdc23 during an S phase block after Cdc45 has bound causes a small reduction in Cdc45 chromatin binding, and replication does not terminate in the absence of Mcm10 function. These observations show that Cdc23/Mcm10 function is conserved between fission yeast and Xenopus, where in vitro analysis has indicated a similar requirement for Cdc45 binding, but apparently not compared with Saccharomyces cerevisiae, where Mcm10 is needed for Mcm2 chromatin binding. However, unlike the situation in Xenopus, where Mcm10 chromatin binding is dependent on Mcm2-7, we show that the fission yeast protein is bound to chromatin throughout the cell cycle in growing cells, and only displaced from chromatin during quiescence. On return to growth, Cdc23 chromatin binding is rapidly reestablished independently from pre-RC formation, suggesting that chromatin association of Cdc23 provides a link between proliferation and competence to execute DNA replication.  相似文献   

19.
20.
Previous studies have suggested that cell cycle-dependent changes in the affinity of the origin recognition complex (ORC) for chromatin are involved in regulating initiation of DNA replication. To test this hypothesis, chromatin lacking functional ORCs was isolated from metaphase hamster cells and incubated in Xenopus egg extracts to initiate DNA replication. Intriguingly, Xenopus ORC rapidly bound to hamster somatic chromatin in a Cdc6-dependent manner and was then released, concomitant with initiation of DNA replication. Once pre-replication complexes (pre-RCs) were assembled either in vitro or in vivo, further binding of XlORC was inhibited. Neither binding nor release of XlORC was affected by inhibitors of either cyclin-dependent protein kinase activity or DNA synthesis. In contrast, inhibition of pre-RC assembly, either by addition of Xenopus geminin or by depletion of XlMcm proteins, augmented ORC binding by inhibiting ORC release. These results demonstrate a programmed release of XlORC from somatic cell chromatin as it enters S phase, consistent with the proposed role for ORC in preventing re-initiation of DNA replication during S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号