首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA amplification is associated with genomic instability, the main characteristic of cancer cells, and it frequently involves protooncogenes. Double minute chromosomes (DM) and homogeneously stained regions (HSR) are cytological manifestations of DNA amplification. Gain of chromosome 19 is a recurrent alteration in mouse hepatocellular carcinoma (HCC). In one tumor cell line established from HCC developed in myc transgenic mice, DM derived from chromosome 19 were identified by spectral karyotyping and confirmed by fluorescence in situ hybridization (FISH). A probe generated by PCR from microdissected DM was localized by FISH on normal and HCC-derived cell lines on DM and chromosome 19 at two sites separated by several medium size G-bands. This organization of DM containing amplified sequences from separate loci of the same chromosome, indicates a complex mechanism of DNA amplification, possibly involving more than one gene. DM or HSR were not previously identified in mouse HCC and adult human HCC. The recognition of these loci could lead to the cloning of new genes or identification of known genes important in development or progression of HCC.  相似文献   

2.
In tumor cells in vivo and in vitro the amplification of large DNA sequences is a spontaneous and frequently occurring genetic event. We have used human cells to study independent events leading to a low level of amplification of a single copy of an integrated plasmid. Fluorescence in situ hybridization, chromosome banding, and chromosome painting revealed that the new amplified DNA sequences can become located on chromosomes that are totally unrelated to the chromosome that harbors the original DNA sequences, indicating that the transposition of amplified DNA sequences is interchromosomal. In cells containing amplified DNA sequences the integrated single-copy plasmid remained at its original location. The unit of amplification contained a DNA fragment of at least a 800 kb and the same fragment was also present in the parental single-copy cell clone. The data suggest that a doubling of the DNA region at the original location precedes or is coupled to gene amplification.  相似文献   

3.
A number of DNA clones containing the amplified DNA sequences were isolated from the genomic library of multidrug-resistant (MDR) Djungarian hamster cells using the DNAC0t 10-250 hybridization probe. Five independent nonoverlapping clones were obtained that covered more than 100 kb of the amplified genomic region. These clones were used as hybridization probes in blot-hybridization with DNA from 7 independently derived MDR Djungarian hamster cell lines selected for the resistance to colchicine or actinomycin D. Some clones contained the DNA sequences amplified in all of the cell lines tested while the others contained the cell line specific amplified sequences. Hybridization in situ was used to localize the amplified DNA in metaphase chromosomes of a MDR cell line that contained about 140 copies of these sequences. The approximate size of an amplicon calculated on the basis of the obtained data is about 1-2 X 10(3) kb.  相似文献   

4.
The presence of double minute chromosomes (dmin) in cancer cells is known to be correlated with gene amplifications. In human high grade astrocytomas or glioblastomas, about 50% of cytogenetically characterized cases display dmin. G5 is a cell line which has been established from a human glioblastoma containing multiple dmin. In order to identify the DNA content of these dmin, three techniques were successively used: conventional cytogenetic analysis, comparative genomic hybridization (CGH), and fluorescent in situ hybridization (FISH). The karyotype of G5 cells showed numerical chromosome changes (hypertriploidy), several marker chromosomes, and multiple dmin. CGH experiments detected two strong DNA amplification areas located in 9p21-22 and 9p24, as well as an underrepresentation of chromosomes 6, 10, 11, 13, 14, and 18q. By using FISH with a chromosome 9-specific painting probe to metaphase chromosomes of the G5 cell line, dmin were shown to contain DNA sequences originating from chromosome 9. This study demonstrates the usefulness of a combination of classical karyotyping, CGH, and FISH to identify the chromosomal origin of amplified DNA sequences in dmin. Received: 30 October 1994 / Revised: 25 February 1996  相似文献   

5.
A cloned DNA sequence that is specific for a germ line homogeneously staining region (HSR) on chromosome 1 of the mouse was found to be homologous to a single copy sequence in non-HSR mice. By in situ hybridization, the sequence in non-HSR mice was localized to approximately the same site as the insertion site of the HSR on chromosome 1 of HSR mice, indicating in situ amplification of the HSR.  相似文献   

6.
A modification of reverse chromosome painting was carried out using genomic DNA from tumor cells as a complex probe for chromosomal in situ suppression hybridization to normal metaphase chromsome spreads. Amplified DNA sequences contained in such probes showed specific signals, revealing the normal chromosome positions from which these sequences were derived. As a model system, genomic DNAs were analyzed from three tumor cell lines with amplification units including the proto-oncogene c-myc. The smallest amplification unit was about 90 kb and was present in 16–24 copies; the largest unit was bigger than 600 kb and was present in 16–32 copies. Specific signals that co-localized with a differently labeled c-myc probe on chromosome band 8q24 were obtained with genomic DNA from each cell line. In further experiments, genomic DNA derived from primary tumor material was used in the case of a male patient with glioblastoma multiforme (GBM). Southern blot analysis using an epidermal growth factor receptor gene (EGFR) probe that maps to 7p13 indicated the amplification of sequences from this gene. Using reverse chromosome painting, signals were found both on band 7p13 and bands 12q13–q15. Notably, the signal on 12q13–q15 was consistently stronger. The weaker 7p13 signal showed co-localization with the major signal of the differently labeled EGFR probe. A minor signal of this probe was seen on 12q13, suggesting cross-hybridization to ERB3 sequences homologous to EGFR. The results indicate co-amplification of sequences from bands 12q13–q15, in addition to sequences from band 7p13. Several oncogenes map to 12q13–q15 providing candidate genes for a tumor-associated proto-oncogene amplification. Although the nature of the amplified sequences needs to be clarified, this experiment demonstrates the potential of reverse chromosome painting with genomic tumor DNA for rapidly mapping the normal chromosomal localization of the DNA from which the amplified sequences were derived. In addition, a weaker staining of chromosomes 10 and X was consistently observed indicating that these chromosomes were present in only one copy in the GBM genome. This rapid approach can be used to analyze cases where no metaphase spreads from the tumor material are available. It does not require any preknowledge of amplified sequences and can be applied to screen large numbers of tumors.  相似文献   

7.
Gene amplification chiefly manifests as homogeneously stained regions (HSRs) or double minutes (DMs) in cytogenetically and extrachromosomal DNA (ecDNA) in molecular genetics. Evidence suggests that gene amplification is becoming a hotspot for cancer research, which may be a new treatment strategy for cancer. DMs usually carry oncogenes or chemoresistant genes that are associated with cancer progression, occurrence and prognosis. Defining the molecular structure of DMs will facilitate understanding of the molecular mechanism of tumorigenesis. In this study, we re‐identified the origin and integral sequence of DMs in human colorectal adenocarcinoma cell line NCI‐H716 by genetic mapping and sequencing strategy, employing high‐resolution array‐based comparative genomic hybridization, high‐throughput sequencing, multiplex‐fluorescence in situ hybridization and chromosome walking techniques. We identified two distinct populations of DMs in NCI‐H716, confirming their heterogeneity in cancer cells, and managed to construct their molecular structure, which were not investigated before. Research evidence of amplicons distribution in two different populations of DMs suggested that a multi‐step evolutionary model could fit the module of DM genesis better in NCI‐H716 cell line. In conclusion, our data implicated that DMs play a very important role in cancer progression and further investigation is necessary to uncover the role of the DMs.  相似文献   

8.
We have employed the technique of chromosome "walking" to determine the structure of 240 kilobases of amplified DNA surrounding the dihydrofolate reductase gene in methotrexate-resistant mouse cell lines. Within this region, we have found numerous DNA rearrangements which occurred during the amplification process. DNA subclones from regions flanking the dihydrofolate reductase gene were also utilized as hybridization probes in other cell lines. Our results show that: 1) amplification-specific DNA rearrangements or junctions are unique to each cell line; 2) within a given cell line, multiple amplification-specific DNA sequence rearrangements are found; 3) the degree of amplification of sequences flanking the dihydrofolate reductase gene shows quantitative variation among and within cell lines; and 4) both the arrangement of amplified sequences as well as the magnitude of gene amplification may vary with prolonged culture even under maintenance selection conditions. These studies indicate that there is no static repetitive unit amplified in these cells. Rather, a dynamic and complex arrangement of the amplified sequences exists which is continually changing.  相似文献   

9.
The c-myc gene is amplified in the human breast carcinoma cell line SW 613-S. At early in vitro passages, the extra copies of the gene were mainly localized in double minute chromosomes (DMs), as shown by in situ hybridization with a biotinylated c-myc probe. However, cells without DMs were also present in which the c-myc genes were found integrated into any of several distinct chromosomes (mainly 7q+, 4 and 4q+, and 1). When this cell line was propagated in vitro, the level of c-myc amplification decreased because cells with DMs and a high amplification level were lost and replaced by cells without DMs and having a low amplification level. On the contrary, when early passage SW 613-S cells were grown in vivo, as subcutaneous tumours in nude mice, cells with numerous DMs and a high level of c-myc amplification were selected for. In one cell line (SW 613-Tu1) established from such a tumour, the DM-containing cells were substituted at late passages for cells with a high number of c-myc copies integrated within an abnormally banded region, at band 17q24 of a 17q+ chromosome. When only cells with integrated genes were present, this cell line was still highly tumorigenic indicating that the localization of the c-myc genes in DMs was not required for these cells to be tumorigenic in nude mice. Furthermore, cells of the secondary tumours induced by SW 613-Tu1 did not contain any DMs showing that in vivo growth did not promote the release of integrated c-myc copies into DMs.  相似文献   

10.
11.
Although gene amplification, a process that is markedly enhanced in tumor cells, has been studied in many different cell systems, there is still controversy about the mechanism(s) involved in this process. It is still unclear what happens to the DNA sequences that become amplified, whether they remain present at their original location (conservative gene amplification) or whether gene amplification necessarily results in a deletion at the original location (non-conservative gene amplification). We have studied gene amplification in a human osteosarcoma cell line, starting from a cell clone which contains only one copy of a plasmid integrate. Independent amplificants, originating from this clone and containing elevated plasmid copy numbers, were isolated and analyzed. Based on previous observations, encompassing the persistence of single-copy DNA sequences besides amplified DNA sequences clustered at a different location in the independent amplificants, we proposed an amplification pathway including a local duplication step and transposition of the duplicated DNA to other chromosomal positions. Now we have extended our study to more independent amplificants. We prove that the single-copy plasmid-containing chromosomes in the different amplificants and the single-copy plasmid-containing chromosome in the original parental cell clone are indeed identical, namely a translocation chromosome composed of at least three parts of which two originate from chromosomes 14 and 17. We show that the unit of amplification and the unit of the proposed transposition event are at least 1.5 Mb. We also demonstrate that the amplified DNA sequences, present at genomic locations other than the original single-copy DNA sequences, are preferentially associated with chromosome 16. We find that the amplified DNA sequences are often located at or near a site of chromosome translocation involving chromosome 16. In one cell clone we detect the amplified DNA sequences in most of the cells to be located within a complete chromosome 16 while in a minority of cells the amplified sequences are located at or near a breakpoint on a translocation chromosome 16. This indicates that this amplification region is highly unstable and frequently gives rise to translocation events.  相似文献   

12.
13.
HSRs (homogeneously staining regions) are the cytological correlates of DNA amplification. In the house mouse, Mus musculus, many populations are polymorphic for the presence or absence of HSRs on chromosome 1. In the semispecies M. m. domesticus the amplified DNA is present within one HSR, whereas in M. m. musculus chromosomes 1 with two HSRs are found. Hybridization of HSR-specific probes to Southern blots of HSR-carrying genomic DNAs from different localities and semispecies revealed similar complex band patterns. the remaining variation is restricted to sequences with a low degree of amplification. Variation is higher between semispecies than within one semispecies. It is assumed that HSRs are derived from one original amplification event and that unequal recombination is the mechanism underlying the length variation of HSRs present today in both semispecies. Evidence from G-banding and in situ hybridization shows that the two HSRs of M. m. musculus originated from a single HSR by means of a paracentric inversion, where one break-point was located within the single HSR and the second outside the HSR. As a consequence of the paracentric inversion the two HSRs of M. m. musculus are permanently linked together. Since exchange of genes between the two semispecies is restricted to a narrow hybrid zone the amplification that gave rise to the HSR most probably occurred prior to the divergence into the semispecies M. m. domesticus and M. m. musculus about 1 million years ago.by D. Schweizer  相似文献   

14.
15.
The potential usefulness of chromosome microdissertion, the polymerase chain reaction (PCR), and dot blot hybridization as a quick screening method for determining the genetic composition of double minute chromosomes (DMs) was evaluated. DMs or abrnomally banding regions (ABRs) were microdissected from from multidrug-resistant hamster cell lines and amplified with PCR using primers specific for the hamster multidrug-resistance (MDR) gene, pgp 1. The microdissected-PCR-amplified products were shown to (a) hybridize to a 32P-labeled pCHP1 probe for the hamster MDR gene by using dot blot or Southern blot analysis and also (b) hybridize back to the chromosome region from which they were originally dissected by using fluorescent in situ hybridization. Microdissected/PCR-amplified DMs were also shown to hybridize to ABRs. When microdissected DMs and ABRs were amplified using hamster specific Alu primers, the resulting material was shown to hybridize with probes for hamster MDR and Alu. These results suggest that the DMs contained in these MDR hamster cell lines contain Alu-like sequences and the chromosome microdissection-PCR-hybridization approach might be used as a quick screening method for identifying genes amplified in DMs and ABRs in cell lines and human tumor samples.  相似文献   

16.
 The recent recovery of maize (Zea mays L.) single-chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses has provided novel source materials for the potential isolation of maize chromosome-specific sequences for use in genetic mapping and gene cloning. We report here the application of a technique, known as representational difference analysis (RDA), to selectively isolate maize sequences from a maize chromosome-3 addition line of oat. DNA fragments from the addition line and from the oat parent were prepared using BamHI digestion and primer ligation followed by PCR amplification. A subtractive hybridization technique using an excess of the oat parental DNA was employed to reduce the availability for amplification of DNA fragments from the addition lines that were in common with the ones from the oat parental line. After three rounds of hybridization and amplification, the resulting DNA fragments were cloned into a plasmid vector. A DNA library containing 400 clones was constructed by this method. In a test of 18 clones selected at random from this library, four (22%) detected maize-specific repetitive DNA sequences and nine (50%) showed strong hybridization to genomic DNA of maize but weak hybridization to genomic DNA of oat. Among these latter nine clones, three detected low-copy DNA sequences and two of them detected DNA sequences specific to chromosome 3 of maize, the chromosome retained in the source maize addition line of oat. The other eight out of the 13 clones that had strong hybridization to maize DNA detected repetitive DNA sequences or high-copy number sequences present on most or all maize chromosomes. We estimate that the maize DNA sequences were enriched from about 1.8% to over 72% of the total DNA by this procedure. Most of the isolated DNA fragments detected multiple or repeated DNA sequences in maize, indicating that the major part of the maize genome consists of repetitive DNA sequences that do not cross-hybridize to oat genomic sequences. Received: 18 November 1997 / Accepted: 12 March 1998  相似文献   

17.
There is growing evidence that amplification of specific genes is associated with tumor progression. While several proto-oncogenes are known to be activated by amplification, it is clear that not all the genes involved in DNA amplification in human tumors have been discovered. Our approach to the identification of such genes is based on the 'reverse genetics' methodology. Anonymous amplified DNA fragments are cloned by virtue of their amplification in a given tumor. These sequences are mapped in the normal genome and hence define a new genetic locus. The amplified domain is isolated by long-range cloning and analyzed along three lines of investigation: new genes are sought that can explain the biological significance of the amplification; the structure of the domain is studied in normal cells and in the amplification unit in the cancer cell; attempts are made to identify molecular probes of diagnostic value within the amplified domain. This application of genome technology to cancer biology is demonstrated in our study of a new genomic domain at chromosome 10q26 which is amplified specifically in human gastric carcinomas.  相似文献   

18.
Vincristine-resistant (VCR) Chinese hamster ovary (CHO) cells have been established by stepwise selection in increasing concentrations of vincristine. These cells exhibit multidrug cross-resistance to a number of drugs that have no structural or functional similarities. Cytogenetic analyses of resistant cells revealed the presence of double minutes and expanded chromosomal segments, thus implicating gene amplification as a possible mechanism of resistance. An amplified DNA segment isolated from other multidrug cross-resistant CHO cell lines (Roninson, I. B., H. T. Abelson, D. E. Housman, N. Howell, and A. Varshavsky, 1984, Nature (Lond.), 309:626-628) is also amplified in our VCR lines. This DNA segment was used as a probe to screen a cosmid library of VCR genomic DNA, and overlapping clones were retrieved. All of these segments, totaling approximately 45 kilobases (kb), were amplified in VCR cells. Using in situ hybridization, we localized the amplification domain to the long arm of CHO chromosome 1 or Z1. Northern hybridization analysis revealed that a 4.3-kb mRNA was encoded by this amplified DNA domain and was over-produced in the VCR cells. Suggestions for the involvement of these amplified DNA segments in the acquisition of multidrug cross-resistance in animal cells are also presented.  相似文献   

19.
Rat hepatoma cells amplified for adenosine deaminase (ADA) gene sequences show the amplified DNA on large, homogeneously staining regions (HSRs). The amplified cells are stable in the absence of selection for 12 mo without loss of ADA activity or gene sequences. However, in hybrids formed between an amplified cell line with a prominent HSR and a nonamplified cell line, rapid loss of ADA activity, as well as gene sequences, occurs. Karyotype analyses of the hybrids indicate that the HSR structures are no longer visible in a large percentage of the hybrid metaphase spreads and appear to have been replaced by DNA structures that resemble double minutes. Our data provide evidence that the extent of the breakdown of the HSR in the hybrids may be affected by the presence of an active adenosine kinase or the level of ATP in the cells and additional unidentified factors are present in the hybrids that affect the integrity of the HSR structure. There is no evidence for a specific trans-acting factor in nonamplified cells that regulates gene amplification.  相似文献   

20.
A simple method to create a chromosome-specific DNA librqary of rice,including microdissection,amplification,charterization and cloning,is described.Rice chromosome 4 from a metaphase cell has been isolated and amplified by the Linker Adapter PCR (LA-PCR).The PCR products were labeled as probes with DIG-11-dUTP using the random priming method.Southern blot analysis with rice genomic DNA and specific RFLP markers demonstrated that the PCR products were derived from rice chromosome 4.A large library comprising over 100,000 recombinant plasmid microclones from rice chromosome 4 was constructed.Colony hybridization showed that 58% of the clones contained single or low-copy sequences and 42% contained repetitive sequences.The size of inserts generated by PCR ranged from 140bp to 500bp.This method will facilitate cloning of the specific chromosome DNA markers and important genes of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号