共查询到20条相似文献,搜索用时 10 毫秒
1.
四川小麦地方品种Gli-1、Gli-2和Glu-1位点的遗传多样性(英文) 总被引:18,自引:0,他引:18
运用APAGE和SDS_PAGE方法 ,研究了 89个四川小麦 (TriticumaestivumL .)地方品种Gli_1、Gli_2和Glu_1位点的遗传多样性。在这些地方品种中 ,总共发现 32种醇溶蛋白带型和 3种高分子谷蛋白带型。在Gli_1、Gli_2和Glu_1位点上 ,分别检测出 14、15和 5个等位基因。在每一个位点上 ,出现频率最高的等位基因分别为Gli_A1a(89% ) ,Gli_B1h (46 % ) ,Gli_D1a (6 5 % ) ,Gli_A2a (6 4% ) ,Gli_B2j (45 % ) ,Gli_D2a (48% ) ,Glu_A1c (99% ) ,Glu_B1b (99% )和Glu_D1a (10 0 % )。四川小麦地方品种的Nei’s遗传变异系数平均为 0 .370 6 ,变幅为 0到 0 .70 87;其中Gli_B2位点的遗传多样性最高 ,而Glu_D1位点最低。同时 ,Gli位点的遗传多样性高于Glu_1位点的遗传多样性 ,但又低于现代品种Gli位点的遗传多样性。这些结果说明四川地方小麦品种的遗传基础狭窄。在研究中 ,“成都光头”与“中国春”的醇溶蛋白和高分子谷蛋白的带型完全一致 ,进一步证实“中国春”是“成都光头”的一个选系。 相似文献
2.
中国特有小麦Gli—1、Cli—2和Glu—1位点的遗传多样性 总被引:2,自引:0,他引:2
运用APAGE和SDS-PAGE方法,研究了32份中国特有小麦Gli-l,Gli-2和Glu-l位点的遗传多样性,在14份云南铁壳麦(Triticum aestivum ssp.yunnanese King)中,共出现8种醇溶蛋白事才4种高分子谷蛋白带型,在9份新疆稻麦(T.petropavlovskyi Udacz.et Migusch)中,观察到9种醇溶蛋白带型和5种高分子谷蛋白带型,其中1份新疆稻麦(稻麦2)具有Glu0-DI编码的新亚基2.1+10.1,在这3种中国特有小麦群体中,Gli-l位点分别检测出10,14和11个等位基因,Gli-2位点各具有11,14,和12个等位基因,Glu-1位点也分别出现5,6和8个等位基因,云南铁壳麦,西藏半野生小麦和新疆稻麦群体内的Nei's遗传变异系数分别为0.3798,0.5625和0.5693,这些结果说明,与云南铁壳麦相比,西藏半野生小麦和新疆稻麦群体内的遗传变异相对较大。 相似文献
3.
4.
中国小麦地方品种内和品种间醇溶蛋白遗传多样性分析 总被引:8,自引:0,他引:8
为了揭示中国小麦地方品种内遗传异质性和品种间的遗传多样性,采用A-PAGE方法,对72份来自不同生态区的地方品种进行醇溶蛋白构成分析。结果发现,全部供试地方品种共观察到101条迁移率不同的务带,构成229种醇溶蛋白构型,每个品种醇溶蛋白条带数目为14—24。63份(87.5%)地方品种在品种内具有2种以上醇溶蛋白变异类型,其中,变异类型最多的品种二红皮小麦(ZM004659)30个子粒中有14种之多,多数品种具有2—3种变异类型。品种内醇溶蛋白构型一致的品种共有9个,占12.5%。这表明供试的大多数小麦地方品种内个体间在醇溶蛋白构成上具有遗传异质性。聚类分析表明,相同生态区的地方品种没有整齐地聚为一类。 相似文献
5.
新疆冬春麦区小麦地方品种贮藏蛋白遗传多样性研究 总被引:3,自引:1,他引:2
采用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)对236份新疆小麦地方品种的高分子量麦谷蛋白亚基(HMW-GS)的组成进行了分析。结果表明:Glu-Ⅰ位点共有19种等位基因,其中Glu-Al位点3种,Glu-Bl位点7种,Glu—D1住点9种;亚基null、7+8、2+12在各自的位点上出现频率最高,分别达到91.95%、85.17%、80.93%;亚基组成类型共有21种,主要为null/7+8/2+12,频率达70.34%;同时筛选出33份含有1、2^*、13+16、14+15、5+10、1.5+10、174-18等优质亚基的材料,可作为优质基因源。利用酸性聚丙烯酰胺凝胶电泳(A-PAGE)对其中的65份地方品种进行醇溶蛋白多样性分析。结果表明:电泳出现64条迁移率不同的谱带,构成65种组合,其中ω区出现的谱带最多,达17条;其次是β和γ区各16条,α区出现的谱带数最少,为15条。从每条谱带在65份材料中出现的频率看,总的变异范围为1.54%~93.85%;α、β、γ和ω4个分区多样性指数(H1)分别为0.498、0.386、0.523和0.348,表明新疆麦区小麦地方品种贮藏蛋白位点存在丰富的遗传多样性。 相似文献
6.
采用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)对236份新疆小麦地方品种的高分子量麦谷蛋白亚基(HMW-GS)的组成进行了分析。结果表明:Glu-1位点共有19种等位基因,其中Glu-A1位点3种,Glu-B1位点7种,Glu-D1位点9种;亚基null、7+8、2+12在各自的位点上出现频率最高,分别达到91.95%、85.17%、80.93%;亚基组成类型共有21种,主要为null/7+8/2+12,频率达70.34%;同时筛选出33份含有1、2*、13+16、14+15、5+10、1.5+10、17+18等优质亚基的材料,可作为优质基因源。利用酸性聚丙烯酰胺凝胶电泳(A-PAGE)对其中的65份地方品种进行醇溶蛋白多样性分析。结果表明:电泳出现64条迁移率不同的谱带,构成65种组合,其中ω区出现的谱带最多,达17条,其次是β和γ区各16条,α区出现的谱带数最少,为15条。从每条谱带在65份材料中出现的频率看,总的变异范围为1.54%~93.85%;α、β、γ和ω四个分区多样性指数(H′)分别为0.498、0.386、0.523和0.348。这表明新疆麦区小麦地方品种贮藏蛋白位点存在丰富的遗传多样性。 相似文献
7.
谷子地方品种和育成品种的遗传多样性研究 总被引:4,自引:1,他引:4
田伯红 《植物遗传资源学报》2010,11(2):224-228
对河南、河北和山东等地的482份谷子地方品种和近30年培育的谷子品种的11个形态性状和农艺性状进行种植观察,研究两类品种的遗传多样性。与地方品种相比,育成品种形态性状的多样性指数大多低于地方品种,育成品种的株高比地方品种显著降低,稳重、穗粒重和出谷率等性状显著提高。地方品种的广泛变异类型是现代谷子育种的重要遗传资源。 相似文献
8.
采用分别保存于长期库及中期库的3个小麦地方品种的6份材料,进行了9项农艺性状及35个与农艺性状相关的微卫星标记检测,每份材料选取30个单株进行遗传多样性与遗传结构分析。结果表明:(1)更新前,3个小麦地方品种均为遗传异质性群体,在SSR位点上的异质度分别为57.14%、48.57%和5.71%。(2)在农艺性状表现上,只有温泉小麦3在株高和穗粒数上更新后比更新前显著增加,其他材料无显著差异。(3)在SSR位点多态性表现上,3个品种在更新后均发生了遗传多样性变化,8个与粒重、产量、生育期性状相关位点存在等位位点丢失现象,其中2个与粒重、生育期相关位点频率变化显著。(4)综合农艺性状调查与SSR分子标记检测结果发现,3个品种更新前后在多样性指数上无显著差异,遗传分化系数Gst分别为0.0269、0.0324和0.0380,即更新前后遗传差异分别为2.69%、3.24%和3.80%。上述结果建议,经繁殖更新的小麦种质资源能够比较完好地保持其遗传多样性和遗传结构。对于遗传异质性小麦地方品种在繁殖更新后存在遗传多样性丢失的危险,为了保证更新前后的遗传完整性,建议在繁殖更新过程中每个品种至少应保持300个单株的群体。 相似文献
9.
西南冬麦区地方品种HMW-GS组成遗传多样性研究 总被引:2,自引:0,他引:2
采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)对西南冬麦区(云南、贵州、四川)3个省份共计560份小麦地方品种的高分子量谷蛋白亚基(HMW-GS)组成进行了研究。结果表明:Glu-1位点共有22种等位基因,其中Glu-A1位点4种、Glu-B1位点11种、Glu-D1位点7种;亚基null、7 8和2 12在各自位点的频率最高,分别为89.64%、68.21%和96.43%。亚基组成类型共有46种,以null/7 8/2 12和null/7 9/2 12为主,频率分别为50.89%和11.79%。在这些材料中筛选出一些含有1、2*、17 18、14 15、5 10等优质亚基的材料,其中有52份材料含有优质亚基组合。 相似文献
10.
刘振兴 《植物遗传资源学报》2011,12(5):679-685
利用SSR分子标记对唐山红小豆、天津红小豆的96个品种(按品种地地理来源划分为14个品种群)进行遗传多样性分析,表明197对引物中共有89对的扩增谱带清晰稳定,共扩增出285条带,多态性条带百分率(PPB)达100%,经Popgene32软件分析,遵化品种资源的遗传多样性的水平最高[PPB=85.39%,I(信息指数)=0.567],其次为玉田和迁安的品种资源,而在天津红小豆资源中,除静海县(排位第5)外,遗传多样性水平相对较小,其中宁河的遗传多样性水平最低(PPB=22.47%,I=0.1575)。聚类分析表明,96个品种可分为三个组群,唐山红小豆组群中包含了天津静海小豆;天津红小豆中的大港品种资源单独为一组群;其它天津红小豆为第二大组群。本研究可为地方品种的保存及杂交组配提供参考。 相似文献
11.
利用SSR分子标记对唐山、天津的96个红小豆品种(按品种地理来源划分为14个品种群)进行遗传多样性分析,结果表明,197对引物中共有89对的扩增谱带清晰稳定,共扩增出285条带,多态性条带百分率( PPB)达100%,经Popgene32软件分析,遵化品种资源的遗传多样性水平最高[PPB= 85.39%,I(信息指数)=0.567],其次为玉田和迁安的品种资源,而在天津红小豆资源中,除静海县(排位第5)外,遗传多样性水平相对较小,其中宁河的遗传多样性水平最低(PPB= 22.47%,I=0.1575).聚类分析表明,96个品种可分为三个组群,唐山红小豆组群中包含了天津静海小豆;天津红小豆中的大港品种资源单独为一组群;其他天津红小豆为第二大组群.本研究可为地方品种的保存及杂交组配提供参考. 相似文献
12.
黄淮麦区16个小麦品种(系)的Glu—1,Glu—3和Gli—1位点上的基因多样 … 总被引:7,自引:0,他引:7
16个品种(系)的高分子量麦谷蛋白亚基(HMW-GS)的等位基因频率分别为Glu-Ala(80%),Glu-Alc(12%),Glu-Alb(8%);Glu-B1b(63%)Glu-Blc(31%)Glu-Ble(6%)Glu-Dla(38%),Glu-Dld(50%)Glu-Dlc(12%),16个品种(系)的低分子量麦谷蛋白亚基(LMW-GS)的等位基因频率分别为:Glu-A3a(38%),G 相似文献
13.
中国特有小麦Gli-1、Gli-2和Glu-1位点的遗传多样性(英文) 总被引:13,自引:0,他引:13
运用APAGE和SDS_PAGE方法 ,研究了 32份中国特有小麦Gli_1、Gli_2和Glu_1位点的遗传多样性。在 1 4份云南铁壳麦 (Triticumaestivumssp .yunnaneseKing)中 ,共出现 8种醇溶蛋白带型和 3种高分子谷蛋白带型。在 9份西藏半野生小麦 (T .aestivumssp .tibetanumShao )中 ,发现 9种醇溶蛋白带型和 4种高分子谷蛋白带型。在 9份新疆稻麦 (T .petropavlovskyiUdacz.etMigusch .)中 ,观察到 9种醇溶蛋白带型和 5种高分子谷蛋白带型 ,其中 1份新疆稻麦 (稻麦 2 )具有Glu_D1编码的新亚基 2 .1 1 0 .1。在这 3种中国特有小麦群体中 ,Gli_1位点分别检测出 1 0、1 4和1 1个等位基因 ;Gli_2位点各具有 1 1、1 4和 1 2个等位基因 ;Glu_1位点也分别出现 5、6和 8个等位基因。云南铁壳麦、西藏半野生小麦和新疆稻麦群体内的Nei’s遗传变异系数分别为 0 .3798、0 .56 2 5和 0 .56 93。这些结果说明 ,与云南铁壳麦相比 ,西藏半野生小麦和新疆稻麦群体内的遗传变异相对较大。 相似文献
14.
部分耐盐小麦品种(系)SSR位点遗传多样性研究 总被引:5,自引:3,他引:5
选择有多态性的32对SSR引物对80个小麦耐盐品种(系)进行遗传差异研究,共检测出155个等位变异,平均每个位点上有4.75个等位变异;供试80份耐盐小麦品种(系)来源广泛,遗传基础丰富,表现出较高的遗传多样性,遗传相似系数范围在0.26~0.81;聚类分析结果显示,冬性小麦品种(系)聚为一大类;春性小麦品种(系)也聚为一大类;一些系谱相同或相近的品种(系)遗传相似系数较大;A、B、D基因组中SSR位点平均等位变异差异不大,以B基因组较高. 相似文献
15.
黄淮麦区小麦品种(系)的ISSR位点遗传多样性分析 总被引:22,自引:6,他引:22
选用11个ISSR引物,对黄淮麦区96个小麦推广品种(系)进行遗传多样性分析。共检测到96个多态性位点,每个引物多态性位点数平均为8.7个,变幅为3~23个;ISSR引物的多态性信息含量PIC变幅为0.601~0.941,平均0.791,表明ISSR具有较强的品种间区分能力,是研究小麦种质资源遗传多样性的有效分子标记技术之一。96个品种(系)间,Nei’s遗传相似系数变化范围为0.53~0.91,平均为0.60,品种间遗传相似性变幅较大,表明黄淮麦区不同小麦品种(系)间存在着不同程度的遗传多样性差异。根据品种间遗传相似系数聚类,96份材料被聚成8大类群,共14个亚类,类群与系谱和原产地无关。 相似文献
16.
中国花生地方品种与育成品种的遗传多样性 总被引:3,自引:0,他引:3
以中国花生小核心种质中涉及来源于中国本土的145份地方品种和67份育成品种为材料,应用SSR技术从206对SSR引物中筛选出25对扩增效果好的多态性引物进行检测,并对其进行遗传多样性分析比较.结果表明:(1)地方品种与育成品种各具有特殊带型及各自独特的遗传特性.相似系数和多态性信息量均表明,地方品种的多样性比育成品种丰富,其中:地方品种之间的相似系数为0.57~0.99,平均0.795,多态性信息量0.530 0;育成品种之间的相似系数0.63~0.99,平均0.810,多态性信息量0.463 3.地方品种与育成品种之间的平均相似系数为0.794,变异范围0.56~0.99.(2)对不同生态区来源的分析表明,除黄河流域外其他各生态区地方品种的观测等位基因数和遗传多样性指数(分别为2.740 7~3.518 5和0.816 4~0.879 4)均比育成品种的对应值(分别为1.7012~2.145 6和0.4829~0.802 2)大,并以长江流域生态区地方品种的观测等位基因数和遗传多样性指数最大,分别为3.518 5和0.879 4.(3)聚类分析结果表明,花生核心种质中,中国本土资源分为3个品种群,即地方品种密枝亚种群、地方品种疏枝亚种群和育成品种群,与花生的亚种分类一致.(4)通过遗传多样性分析,鉴定出一批遗传差异较大的材料,其中zhh1398与zhh0041的遗传差异最大,相似系数为0.56,为花生品种的遗传改良及作图群体的构建奠定了基础. 相似文献
17.
利用98对SSR标记对202份中国水稻地方品种和选育品种的遗传多样性进行比较分析.结果显示供试品种具有较丰富的遗传多样性,共检测到等位基因1350个,每个位点的等位基因数(Na)变化范围为3~ 39,平均14个;Nei基因多样性指数变化范围(He)为0.125 ~0.955,平均0.733;多态信息量(PIC)变化范围为0.122 ~0.953,平均0.680;稀有等位基因数(Nr)913个;等位基因丰度(Rs)8.33.栽培稻地方品种和选育品种遗传多样性差异明显,地方品种等位基因数、Nei基因多样性指数、多态信息量、稀有等位基因数和等位基因丰度(Na=1219,He=0.747,PIC=0.710,Nr=756,Rs =8.50)均高于选育品种(Na =919,He =0.704,PIC =0.650,Nr=529,Rs =7.01).各染色体组水平的遗传多样性分析表明,选育品种仅在1号染色体上的遗传多样性高于地方品种,进一步分析显示选育品种的遗传改良在基因组水平上具有区间特异性. 相似文献
18.
19.
小麦21条染色体RFLP作图位点遗传多样性分析 总被引:35,自引:0,他引:35
对来自世界11个国家的15个小麦品种(系)(Triticum aestivum L.AABBDD,2n = 42)472个RFLP位点的遗传多样性进行了检测,并进行了逐条染色体分析,结果发现:(ⅰ) 15个品种在各条染色体上的聚类各不相同.根据472个遗传位点遗传多样性数据,15个品种可聚类为4类,Synthetic,Hope, Timgalen各为一类,其余品种为一类,遗传距离远近恰与其所携带的小麦亲缘种染色体数目有关.(ⅱ)普通小麦遗传多样性非常贫乏,不同国家来源的品种相似系数高达0.8以上,多数品种间的大多数位点无遗传多样性,有53%的位点在供试的栽培品种中完全无多样性.(ⅲ)以四倍体小麦(AABB)和粗山羊草(DD)为亲本的品种(系)中,其对应的染色体上有较高的遗传多样性,其中有49.4%的等位变异在供试栽培种中没有发现,说明小麦的原始供体种是丰富现代栽培小麦遗传多样性的重要资源.(ⅳ) 根据遗传多样性位点及其作图位置, 可以检测到小麦栽培品种与其亲缘种杂交后代中亲缘种的染色体(片段).(ⅴ)在小麦的A,B,D3个基因组中, B基因组的遗传多样性最高,D基因组最差(尤以1D最甚),A基因组居中.(ⅵ)中国古老栽培品种中国春(CS)与国外栽培品种主要差异表现在染色体1B,3B和5A上,并发现了12个中国春的特异等位变异.认为现代栽培小麦遗传多样性狭窄是目前小麦育种难以取得突破的关键问题之一,并对如何丰富小麦的遗传多样性提出了建议. 相似文献
20.
我国西南地区玉米地方品种遗传多样性的SSR分子标记分析 总被引:1,自引:0,他引:1
利用微卫星(SSR)标记技术和DNA混合取样方法,选取均匀覆盖玉米染色体组的42对SSR引物,检测了来自我国西南地区54个玉米地方品种的遗传多样性。在54个玉米地方品种中检测到256个等位基因,每个SSR标记的等位基因数为2~9个,平均6.1个,说明我国西南地区玉米地方品种遗传多样性丰富。根据遗传相似系数矩阵做出的树状图,将54个玉米地方品种大致划分成4类,来源于同一地区的多数玉米地方品种划分在同一类中,表明西南地区玉米地方品种的地理分布与其遗传背景存在内在联系。从54个玉米地方品种中选出11个,每个品种选取15个单株,共165个DNA单株样品,分析玉米地方品种的遗传结构及其品种内的遗传多样性。对于检测玉米地方品种的遗传多样性,DNA单株样品分析优于DNA混合样品分析,42对相同的SSR引物在11个玉米地方品种中检测到330个等位基因,平均等位基因数A=7.86,有效等位基因数Ae=3.90,平均期望杂合度He=0.69,实际观察杂合度H0=0.37。据遗传结构分析结果,固定指数(F)为0.25~0.79,表明玉米地方品种是典型的混合繁育系统;由于杂合体不足,玉米地方品种群体间及群体内的遗传结构均偏离了Hardy-Weinberg平衡;杂合性基因多样度比率(Fst)平均为0.07,表明品种间和品种内的遗传变异分别占总遗传变异的7%和93%。玉米地方品种内遗传多样性及品种间遗传距离分析结果表明,在我国西南地区,分布在四川的玉米地方品种具有最丰富的遗传变异。经综合分析推测,我国西南地区玉米地方品种最早引进到四川种植,由此向毗邻地区传播扩散。 相似文献