首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
3.
4.
5.
This report describes the purification and partial characterization of a novel retinoic acid-binding protein (CRABP-II) from neonatal rat pups. The isolation procedure included gel filtration on Sephadex G-75, ion exchange chromatography on DEAE-cellulose, and high performance liquid chromatography (HPLC) on a DEAE 5PW column. Two retinoic acid-binding peaks were resolved at the DEAE-cellulose step, with CRABP-I in the major peak and CRABP-II in the minor peak. Apparent homogeneity was achieved for both binding proteins after the HPLC step. CRABP-II consists of a single polypeptide, migrating with an apparent Mr of 15,000 in sodium dodecyl sulfate-polyacrylamide gel. It has an isoelectric point of 5.0. The dissociation constant for CRABP-II of retinoic acid was estimated to be 65 nM by fluorescence titration. Amino-terminal sequence analysis showed that CRABP-II has a distinct sequence, while the CRABP-I sequence is exactly identical to that of the rat testis CRABP. Despite the extensive sequence homology between CRABP-I and CRABP-II, antibodies directed against CRABP-I did not cross-react with CRABP-II.  相似文献   

6.
7.
Treatment of F9 teratocarcinoma stem cells with retinoic acid (RA) causes their irreversible differentiation into extraembryonic endoderm. To elucidate the role of the cellular retinoic acid binding protein-I (CRABP-I) in this differentiation process, we have generated several different stably transfected F9 stem cell lines expressing either elevated or reduced levels of functional CRABP-I protein. Stably transfected lines expressing elevated levels of CRABP-I exhibit an 80-90% reduction in the RA induced expression of retinoic acid receptor (RAR) beta, laminin B1, and collagen type IV (alpha 1) mRNAs at low exogenous RA concentrations, but this reduction is eliminated at higher RA concentrations. Thus, greater expression of CRABP-I reduces the potency of RA in this differentiation system. Moreover, transfection of a CRABP-I expression vector into F9 cells resulted in five- and threefold decreases in the activation of the laminin B1 RARE (retinoic acid response element) and the RAR beta RARE, respectively, as measured from RARE/CAT expression vectors in transient transfection assays. These results support the idea that CRABP-I sequesters RA within the cell and thereby prevents RA from acting to regulate differentiation specific gene expression. Our data suggest a mechanism whereby the level of CRABP-I can regulate responsiveness to RA during development.  相似文献   

8.
The CRABP-I and CRABP-II proteins are high affinity cytoplasmic retinoic acid-binding proteins. In undifferentiated F9 teratocarcinoma stem cells, only the CRABP-I protein is expressed at detectable levels. We have previously shown that overexpression of the CRABP-I protein in stably transfected F9 stem cell lines results in a lower sensitivity to a given external concentration of retinoic acid relative to that of untransfected F9 cells; in contrast, reduced CRABP-I expression in CRABP-I cDNA anti-sense transfected lines is associated with increased sensitivity of these lines to retinoic acid. These three types of cell lines were cultured in the presence of 50 nM [3H]retinoic acid, and the metabolism of retinoic acid was followed over the next 24 h. The results demonstrate that CRABP-I has the ability to alter both the levels and types of RA metabolites produced in the cytoplasm of differentiating embryonic stem cells. Moreover, the level of CRABP-I determines the rate of RA metabolism to 4-oxo-RA such that the higher the CRABP-I level, the faster the metabolism of [3H]retinoic acid. This is the first reported connection between the level of CRABP-I expression and intracellular RA metabolism.  相似文献   

9.
10.
In these studies, we wished to determine the effect of teratogenic doses of retinoic acid on the expression of cellular retinoic acid binding protein I (CRABP-I) mRNA, cellular retinoic acid binding protein II (CRABP-II) mRNA, cellular retinol binding protein I (CRBP-I) mRNA, and cellular retinol binding protein II (CRBP-II) mRNA in mouse conceptuses. Levels of CRABP-II mRNA and CRBP-I mRNA were modestly elevated (2.5-fold and 1.5-fold, respectively) in 9-day gestation conceptuses following treatment of dams with 100 mg/kg b.w. of retinoic acid. These levels were elevated by 6 hr following treatment and remained elevated until 48 and 24 hr, respectively. Two other retinoids, etretinate and retinoyl beta-glucuronide, also moderately elevated CRABP-II mRNA and CRBP-I mRNA levels in conceptuses. In contrast, the levels of CRABP-I mRNA in the conceptuses remained unaffected by treatment with any of these three retinoids. These results demonstrate that conceptuses have a limited capacity to elevate the cellular retinoid binding proteins mRNA levels and presumably the synthesis of their respective proteins in response to high, teratogenic doses of retinoic acid. As a result, an excess of free retinoic acid becomes available to the nuclear retinoic acid receptors, which may lead to inappropriate gene expression and eventual maldevelopment.  相似文献   

11.
12.
13.
14.
15.
16.
Endogenous retinoids have been implicated in alveologenesis in both the rat and the mouse, and exogenous retinoic acid (RA) can reverse or partially reverse experimental emphysema in adult rat and mouse models by an unknown mechanism. In this study, we examine the cellular and molecular biology of retinoid signaling during alveologenesis in the mouse. We describe the temporal and spatial expression of the retinoid binding proteins CRBP-I, CRBP-II, and CRABP-I using RT-PCR and immunohistochemistry. We identify the retinoic acid receptor isoforms RAR-alpha 1, RAR-beta 2, RAR-beta 4, and RAR-gamma 2 and describe their temporal and spatial expression using RT-PCR and in situ hybridization. We demonstrate that both retinoid binding proteins and RAR isoforms are temporally regulated and found within the alveolar septal regions during alveologenesis. These data support a role of dynamic endogenous RA signaling during alveolar formation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号