首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本研究以谷氨酸棒杆菌(Corynebacterium glutamicum)标准菌株ATCC 13032染色体为模板,设计引物PCR扩增高丝氨酸脱氢酶编码基因(hom),在hom基因内部插入一段来源于质粒pET28a的卡那霉素抗性基因(Km),得到基因元件hom::Km;通过电击转化法将hom::Km转入出发菌株替换原菌株的hom,在含卡那霉素的平板上挑取阳性转化子,通过PCR验证得到高丝氨酸脱氢酶缺陷的重组菌。发酵结果表明重组菌C.g- hom::Km -8发酵60小时赖氨酸产量达到4.7 g/L,是出发菌株谷氨酸棒杆菌ATCC 13032(0.7 g/L)的6.7倍。  相似文献   

2.
In Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum, homoserine dehydrogenase (HD), the enzyme after the branch point of the threonine/methionine and lysine biosynthetic pathways, is allosterically inhibited by L-threonine. To investigate the regulation of the C. glutamicum HD enzyme by L-threonine, the structural gene, hom, was mutated by UV irradiation of whole cells to obtain a deregulated allele, homdr. L-Threonine inhibits the wild-type (wt) enzyme with a Ki of 0.16 mM. The deregulated enzyme remains 80% active in the presence of 50 mM L-threonine. The homdr gene mutant was isolated and cloned in E. coli. In a C. glutamicum wt host background, but not in E. coli, the cloned homdr gene is genetically unstable. The cloned homdr gene is overexpressed tenfold in C. glutamicum and is active in the presence of over 60 mM L-threonine. Sequence analysis revealed that the homdr mutation is a single nucleotide (G1964) deletion in codon 429 within the hom reading frame. The resulting frame-shift mutation radically alters the structure of the C terminus, resulting in ten amino acid (aa) changes and a deletion of the last 7 aa relative to the wt protein. These observations suggest that the C terminus may be associated with the L-threonine allosteric response. The homdr mutation is unstable and probably deleterious to the cell. This may explain why only one mutation was obtained despite repeated mutagenesis.  相似文献   

3.
The glk gene from Corynebacterium glutamicum was isolated by complementation using Escherichia coli ZSC113 (ptsG ptsM glk). We sequenced a total of 3072 bp containing the 969-bp open reading frame encoding glucose kinase (Glk). The glk gene has a deduced molecular mass of 34.2 kDa and contains a typical ATP binding site. Comparison with protein sequences revealed homologies to Glk from Streptomyces coelicolor (43%) and Bacillus megaterium (35%). The glk gene in C. glutamicum was inactivated on the chromosome via single crossover homologous recombination and the resulting glk mutant was characterized. Interestingly, the C. glutamicum glk mutant showed poor growth on rich medium such as LB medium or brain heart infusion medium in the presence or absence of glucose, fructose, maltose or sucrose as the sole carbon source. Growth yield was reduced significantly when maltose was used as the sole carbon source using minimal medium. The growth defect of glk mutant on rich medium was complemented by a plasmid-encoded glk gene. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression, and it was found that glk was expressed constitutively under all tested conditions with different carbon sources.  相似文献   

4.
The trpD gene from tryptophan-hyperproducing Corynebacterium glutamicum ATCC 21850 was isolated on the basis of its ability to confer resistance to 5-methyltryptophan on wild-type C. glutamicum AS019. Comparative sequence analysis of the genes from the wild-type AS019 and ATCC 21850 trpD genes revealed two amino acid substitutions at the protein level. Further analysis demonstrated that the trpD gene product from ATCC 21850, anthranilate phosphoribosyltransferase, was more resistant to feedback inhibition by either tryptophan or 5-methyltryptophan than its wild-type counterpart. It is proposed that phosphoribosyltransferase insensitivity to tryptophan in ATCC 21850 contributes to an elevated level of tryptophan biosynthesis.  相似文献   

5.
6.
7.
 The synthesis of L-isoleucine by Corynebacterium glutamicum involves 11 reaction steps, with at least 5 of them regulated in activity or expression. Using gene replacement we constructed a vector-free C. glutamicum strain having feedback-resistant aspartate kinase and feedback-resistant homoserine dehydrogenase activity. Isogenic strains carrying in addition one or several copies of feedback-resistant threonine dehydratase were made and their product accumulations compared. With strain SM1, with high threonine dehydratase activity, accumulation of 50 mM L-isoleucine was achieved, whereas with the parent strain only 4 mM L-isoleucine was obtained. Applying a closed-loop control fed-batch strategy to strain SM1 a final titre of 138 mM L-isoleucine was achieved with an integral molar yield of 0.11 mol/mol, and a maximal specific productivity of 0.28 mmol (g h)-1. This shows that high L-isoleucine yields can be obtained in the presence of one copy of feedback-resistant homoserine dehydrogenase by applying the appropriate fermentation strategy. In addition, the specific profiles of 2-oxoglutarate and pyruvate accumulation during fermentation revealed a major transition of the metabolism of C. glutamicum during the fermentation process. Received: 16 October 1995/Received revision: 21 December 1995/Accepted: 8 January 1996  相似文献   

8.
9.
Novel cloning vectors for glutamic acid producing bacteria have been constructed. The cryptic plasmid pBO1 (4.4 kb) from Brevibacterium sp. recombined with the plasmid pACYC184 (4.0 kb) from Escherichia coli was used to produce composite plasmid named pKA1. The plasmid could propagate and express the Cm-r phenotype in E. coli and coryneform glutamic acid producing bacteria Br. flavum, C. glutamicum, Br. lactofermentum. The pKA1 plasmid and its variants deleted within non-essential plasmid regions with unique restriction sites HindIII, SalGI, SphI were used in cloning experiments. The genes coding for threonine biosynthesis of C. glutamicum and Br. flavum were subcloned into shuttle vectors in C. glutamicum cells. Recombinant plasmids were introduced into protoplasts by polyethylenglycol-mediated transformation of plasmid DNAs. It was shown that the presence of plasmids containing the Br. flavum thrA2 gene in C. glutamicum (thrB) caused 10-fold increase in homoserine dehydrogenase activity, as compared to that of wild type strain, and in homoserine production.  相似文献   

10.
将来自钝齿棒杆菌(Corynebacterium crenatum)CD945具有AEC抗性的天冬氨酸激酶(AKfbr)基因克隆到穿梭载体pJC1上,构建重组质粒pLY153。用电击法将质粒pLY153转化到野生型菌株C. crenatum AS1.542及其突变株C. crenatum CD945中。携带AKfbr基因的C. crenatum AS1.542菌株能抗浓度皆为12mg/mL的AEC和苏氨酸。AKfbr基因在C. crenatum CD945中得到表达,天冬氨酸激酶活性提高4倍。摇瓶发酵实验结果表明,重组菌在对数前期和中期生长正常,不受抑制;与对照菌相比,赖氨酸终产量提高22%,赖氨酸生产率提高23%。  相似文献   

11.
The function of three Corynebacterium glutamicum shikimate dehydrogenase homologues, designated as qsuD (cgR_0495), cgR_1216, and aroE (cgR_1677), was investigated. A disruptant of aroE required shikimate for growth, whereas a qsuD-deficient strain did not grow in medium supplemented with either quinate or shikimate as sole carbon sources. There was no discernible difference in growth rate between wild-type and a cgR_1216-deficient strain. Enzymatic assays showed that AroE both reduced 3-dehydroshikimate, using NADPH as cofactor, and oxidized shikimate, the reverse reaction, using NADP+ as cofactor. The reduction reaction was ten times faster than the oxidation. QsuD reduced 3-dehydroquinate using NADH and oxidized quinate using NAD+ as cofactor. Different from the other two homologues, the product of cgR_1216 displayed considerably lower enzyme activity for both the reduction and the oxidation. The catalytic reaction of QsuD and AroE was highly susceptible to pH. Furthermore, reduction of 3-dehydroshikimate by AroE was inhibited by high concentrations of shikimate, but neither quinate nor aromatic amino acids had any effect on the reaction. Expression of qsuD mRNA was strongly enhanced in the presence of shikimate, whereas that of cgR_1216 and aroE decreased. We conclude that while AroE is the main catalyst for shikimate production in the shikimate pathway, QsuD is essential for quinate/shikimate utilization.  相似文献   

12.
L Yin  X Hu  D Xu  J Ning  J Chen  X Wang 《Metabolic engineering》2012,14(5):542-550
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum.  相似文献   

13.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

14.
Monomeric isocitrate dehydrogenase was expressed in Corynebacterium glutamicum cells harboring pEK-icdES1, a plasmid carrying the gene for the enzyme. Two- to three-fold higher expression levels of the recombinant enzyme were observed in such cells when grown in fermentors, compared to those grown in shaker incubators. The enzyme was purified to homogeneity by ammonium sulfate fractionation, Sephadex G-150 gel filtration, FPLC Mono Q anion-exchange chromatography, and affinity gel chromatography. Approximately 4 mg of 98% pure recombinant enzyme was obtained per liter of bacterial culture. Our results also include optimum buffer conditions for purification and storage of the enzyme.  相似文献   

15.
16.
The function of whcB, one of the four whiB homologues of Corynebacterium glutamicum, was assessed. Cells carrying the P(180)-whcB clone, and thus overexpressing the whcB gene, showed retarded growth, probably due to increased sensitivity to oxidants, whereas cells lacking whcB (ΔwhcB) did not. However, growth retardation was not observed in cells with additionally whcE deleted. Furthermore, the ΔwhcE phenotype, characterized by slow growth and sensitivity to oxidants, was reversed in cells carrying P(180)-whcB. Like the whcE gene, which is also known as a whiB homologue, the whcB gene was preferentially expressed in stationary phase. Determination of the genes under regulation of whcB using two-dimensional polyacrylamide gel electrophoresis identified several genes involved in electron transfer reactions that were regulated in cells carrying P(180)-whcB. Collectively, these findings indicate that whcB function requires whcE. Furthermore, whcB and whcE are paralogues but perform distinct regulatory roles during growth under oxidative stress.  相似文献   

17.
18.
The monomeric isocitrate dehydrogenase (IDH) of Corynebacterium glutamicum is compared to the topologically distinct dimeric IDH of Escherichia coli. Both IDHs have evolved to efficiently catalyze identical reactions with similar pH optimum as well as striking specificity toward NADP and isocitrate. However, the monomeric IDH is 10-fold more active (calculated as kcat/Km.isocitrate/Km.NADP) and 7-fold more NADP-specific than the dimeric enzyme, favoring NADP over NAD by a factor of 50,000. Such an extraordinary coenzyme specificity is not rivaled by any other characterized dehydrogenases. In addition, the monomeric enzyme is 10-fold more specific for isocitrate. The spectacular substrate specificity may be predominantly attributed to the isocitrate-assisted stabilization of catalytic complex during hydride transfer. No significant overall sequence identity is found between the monomeric and dimeric enzymes. However, structure-based alignment leads to the identification of three regions in the monomeric enzyme that match closely the three motifs located in the central region of dimeric IDHs and the homologous isopropylmalate dehydrogenases. The role of Lys253 as catalytic residue has been demonstrated by site-directed mutagenesis. Our results suggest that monomeric and dimeric forms of IDHs are functionally and structurally homologous.  相似文献   

19.
20.
Different strains of Corynebacterium glutamicum, Brevibacterium flavum, and Brevibacterium lactofermentum were analysed for restriction fragment length polymorphism using the homoserine dehydrogenase gene (hom) as a probe. The hybridization patterns obtained PvuII- or Asp700-restriction of chromosomal DNA were specific and distinguishable for each of the three species and identical for the different strains of each species. Thus, the method employed allows rapid distinction of Corynebacterium glutamicum, Brevibacterium flavum, and Brevibacterium lactofermentum. The former species could also be discriminated from the latter two by its resistance to 0.5 g/l of the methionine analog ethionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号