首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this review, Steve Higgs, Ann Powers and Ken Olson describe how alphavirus expression systems, based on infectious cDNA clones of Sindbis virus, constitute a novel RNA virus delivery system suitable for the efficient expression of heterologous gene products or RNA sequences in mosquito cells or adult mosquitoes. The technique permits ready assessment of molecular genetic-based methods of intracellular interference to infection and provides a powerful new tool for molecular biological studies in arthropods.  相似文献   

2.
The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines.  相似文献   

3.
4.
5.
Reverse genetics, an approach to rescue infectious virus entirely from a cloned cDNA, has revolutionized the field of positive-strand RNA viruses, whose genomes have the same polarity as cellular mRNA. The cDNA-based reverse genetics system is a seminal method that enables direct manipulation of the viral genomic RNA, thereby generating recombinant viruses for molecular and genetic studies of both viral RNA elements and gene products in viral replication and pathogenesis. It also provides a valuable platform that allows the development of genetically defined vaccines and viral vectors for the delivery of foreign genes. For many positive-strand RNA viruses such as Japanese encephalitis virus (JEV), however, the cloned cDNAs are unstable, posing a major obstacle to the construction and propagation of the functional cDNA. Here, the present report describes the strategic considerations in creating and amplifying a genetically stable full-length infectious JEV cDNA as a bacterial artificial chromosome (BAC) using the following general experimental procedures: viral RNA isolation, cDNA synthesis, cDNA subcloning and modification, assembly of a full-length cDNA, cDNA linearization, in vitro RNA synthesis, and virus recovery. This protocol provides a general methodology applicable to cloning full-length cDNA for a range of positive-strand RNA viruses, particularly those with a genome of >10 kb in length, into a BAC vector, from which infectious RNAs can be transcribed in vitro with a bacteriophage RNA polymerase.  相似文献   

6.
In recent years, viral vector based in vivo gene delivery strategies have achieved a significant success in the treatment of genetic diseases. RNA virus-based episomal vector lacking viral glycoprotein gene (ΔG-REVec) is a nontransmissive gene delivery system that enables long-term gene expression in a variety of cell types in vitro, yet in vivo gene delivery has not been successful due to the difficulty in producing high titer vector. The present study showed that tangential flow filtration (TFF) can be effectively employed to increase the titer of ΔG-REVec. Concentration and diafiltration of ΔG-REVec using TFF significantly increased its titer without loss of infectious activity. Importantly, intracranial administration of high titer vector enabled persistent transgene expression in rodent brain.  相似文献   

7.
8.
RNA interference has recently become a useful research tool for the studies of gene functions, regulations, and therapies. The double-stranded RNA is utilized to induce the sequence-specific gene silencing. To achieve this goal of specific gene silencing, a proper delivery system of siRNA is highly demanded. A number of approaches for delivering siRNA have been explored over the last few years. In the present study, we demonstrated a simple peptide-based siRNA delivery system in mammalian cells. A GC-EGFP cell line stably expressing enhanced green fluorescent protein was established from stable transfection of human gastric carcinoma cells. The synthetic nona-arginine peptide, an arginine-rich intracellular delivery peptide, or called protein transduction domain peptide, could noncovalently form stable complexes with EGFP siRNA and deliver these mixtures into cells. After entry, siRNA appeared to stay in perinuclear regions within cell, and ultimately fulfilled its targeted egfp gene silencing. These data were in consonance with that RNA-induced silencing complex components could be also localized to these perinuclear regions, creating a focal point for RNA interference factories. In the future, this non-toxic peptide may be proved to be a useful tool for the delivery of exogenous siRNA in RNA interference research.  相似文献   

9.
RNA interference has recently become a useful research tool for the studies of gene functions, regulations, and therapies. The double-stranded RNA is utilized to induce the sequence-specific gene silencing. To achieve this goal of specific gene silencing, a proper delivery system of siRNA is highly demanded. A number of approaches for delivering siRNA have been explored over the last few years. In the present study, we demonstrated a simple peptide-based siRNA delivery system in mammalian cells. A GC-EGFP cell line stably expressing enhanced green fluorescent protein was established from stable transfection of human gastric carcinoma cells. The synthetic nona-arginine peptide, an arginine-rich intracellular delivery peptide, or called protein transduction domain peptide, could noncovalently form stable complexes with EGFP siRNA and deliver these mixtures into cells. After entry, siRNA appeared to stay in perinuclear regions within cell, and ultimately fulfilled its targeted egfp gene silencing. These data were in consonance with that RNA-induced silencing complex components could be also localized to these perinuclear regions, creating a focal point for RNA interference factories. In the future, this non-toxic peptide may be proved to be a useful tool for the delivery of exogenous siRNA in RNA interference research.  相似文献   

10.
The past decade of synthetic biology research has witnessed numerous advances in the development of tools and frameworks for the design and characterization of biological systems. Researchers have focused on the use of RNA for gene expression control due to its versatility in sensing molecular ligands and the relative ease by which RNA can be modeled and designed compared to proteins. We review the recent progress in the field with respect to RNA-based genetic devices that are controlled through small molecule and protein interactions. We discuss new approaches for generating and characterizing these devices and their underlying components. We also highlight immediate challenges, future directions and recent applications of synthetic RNA devices in engineered biological systems.  相似文献   

11.

Conditional transgenic animals are useful tools that can be used to determine the detailed anatomic and molecular bases of sleep–wake regulation. This short review highlights some of the most recent molecular biological technologies for “systems-level” sleep research in freely behaving animals. These technical advances include a wide range of approaches from conditional deletion of genes based on the Cre/loxP technology to RNA interference to the in vivo reversible manipulation (silencing and activation) of neurons by tetracycline-controlled tetanus neurotoxin or the expression of genetically modified receptor-channel complexes. In combination with these advanced genetic techniques, adeno-associated viral vectors (AAVs) represent a versatile gene delivery system for stereotaxic-based brain microinjections and regionally restricted transduction of neuronal cell populations.

  相似文献   

12.
Pan Y  Zhang Y  Jia T  Zhang K  Li J  Wang L 《The FEBS journal》2012,279(7):1198-1208
Recently, microRNA (miRNA)-mediated RNA interference has been developed as a useful tool in gene function analysis and gene therapy. A major obstacle in miRNA-mediated RNAi is cellular delivery, which requires an efficient and flexible delivery system. The self-assembly of the MS2 bacteriophage capsids has been used to develop virus-like particles (VLPs) for RNA and drug delivery. However, MS2 VLP-mediated miRNA delivery has not yet been reported. We therefore used an Escherichia coli expression system to produce the pre-miR 146a contained MS2 VLPs, and then conjugated these particles with HIV-1 Tat(47-57) peptide. The conjugated MS2 VLPs effectively transferred the packaged pre-miR146a RNA into various cells and tissues, with 0.92-14.76-fold higher expression of miR-146a in vitro and about two-fold higher expression in vivo, and subsequently suppressed its targeting gene. These findings suggest that MS2 VLPs can be used as a novel vehicle in miRNA delivery systems, and may have applications in gene therapy.  相似文献   

13.
Lipid vesicles (liposomes) have recently been shown to be a useful vehicle for the delivery of a variety of compounds to cultured cells. Using large unilamellar vesicles composed of phosphatidylserine [LUV(PS)] we were able to encapsulate poliovirus and purified poliovirus ribonucleic acid (RNA) and show that it can be delivered efficiently to cells in an infectious form. LUV-entrapped poliovirus RNA produced infectious titers 100-fold higher than comparable RNA preparations delivered to cells by other techniques. We have made a quantitative analysis of the uptake and infectivity of the vesicle-encapsulated RNA by using various ratios of RNA copies per vesicle and by determining the percentage uptake of labelled lipid and RNA by HeLa cells.  相似文献   

14.
15.
RNA interference is one of the prosperous approaches for cancer treatment. However, small interfering RNA (siRNA) delivery to cancer cells has been faced with various challenges restricting their clinical application over the decades. Since ROR1 is an onco-embryonic gene overexpressed in many malignancies, suppression of ROR1 by siRNA can potentially fight cancer. Herein, a delivery system for ROR1 siRNA based on HIV-1 TAT peptide-capped gold nanoparticles (GNPs) was developed to treat breast cancer. Besides, we introduced a new feasible method for conjugating the peptide to the nanoparticles. Since the GNPs have high affinity to the sulfur, the findings demonstrated the peptide successfully conjugated to the nanoparticles via Au–S bonds. As positively charged nanoparticles showed high cellular uptake, we could use a low concentration of nanoparticles led to high efficient gene transfection with negligible cytotoxicity that was confirmed by flow cytometry, confocal microscopy, gel retardation, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Following transfection, downregulation of ROR1 and its targeted gene, CCND1, induced apoptosis in cancer cells. In conclusion, the reported capped GNPs could be potentially utilized for delivering negatively charged therapeutic agents in particular genes.  相似文献   

16.
17.
Controllable gene delivery via vector-based systems remains a formidable challenge in mammalian synthetic biology and a desirable asset in gene therapy applications. Here, we introduce a methodology to control the copies and residence time of a gene product delivered in host human cells but also selectively disrupt fragments of the delivery vehicle. A crucial element of the proposed system is the CRISPR protein Cas9. Upon delivery, Cas9 guided by a custom RNA sequence cleaves the delivery vector at strategically placed targets thereby inactivating a co-expressed gene of interest. Importantly, using experiments in human embryonic kidney cells, we show that specific parameters of the system can be adjusted to fine-tune the delivery properties. We envision future applications in complex synthetic biology architectures, gene therapy and trace-free delivery.  相似文献   

18.
Infectomics: genomics and proteomics of microbial infections   总被引:5,自引:0,他引:5  
The completion of genomic sequences is the greatest triumph of molecular reductionism since the discovery of the DNA double helix in 1953. However, the utility of reductionism is becoming limited and holistic approaches, including theories and techniques, are desperately needed in the postgenomic era. In the field of infectious diseases there is an urgent need for global approaches that can efficiently, precisely and integratively study structural and functional genomics and proteomics of microbial infections (infectomics). The combination of new (e.g. DNA and protein microarrays) and traditional approaches (e.g. cloning, PCR, gene knockout and knockin, and antisense) will help overcome the challenges we are facing today. We assume that the global phenotypic changes (infectomes) in microbes and their host during infections are encoded by the genomes of microbial pathogens and their hosts, expressed in certain environmental conditions devoted to specific microbe-host interactions. Global drug responses (pharmacomes) in microbes and their host can be detected by genomic and proteomic approaches. Genome-wide approaches to genotyping and phenotyping or expression profiling will eventually lead to global dissection of microbial pathogenesis, efficient and rapid diagnosis of infectious diseases, and the development of novel strategies to control infections. The key fundamental issue of infectious diseases is how to globally and integratively understand the interactions between microbial pathogens and their hosts by using infectomics. In this review, we focus on the events that are considered important in infectomics. Electronic Publication  相似文献   

19.
20.
Despite the exponential rate of discovery of new antigens and DNA vaccines resulting from modern molecular biology and proteomics, the lack of effective delivery technology is a major limiting factor in their application. The bacterial ghost system represents a platform technology for antigen, nucleic acid and drug delivery. Bacterial ghosts have significant advantages over other engineered biological delivery particles, owing to their intrinsic cellular and tissue tropic abilities, ease of production and the fact that they can be stored and processed without the need for refrigeration. These particles have found both veterinary and medical applications for the vaccination and treatment of tumors and various infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号