首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about Subgenomic RNA (sgRNA) dynamics in patients with Coronavirus diseases 2019 (COVID-19). We collected 147 throat swabs, 74 gut swabs and 46 plasma samples from 117 COVID-19 patients recruited in the LOTUS China trial (ChiCTR2000029308) and compared E and orf7a sgRNA load in patients with different illness duration, outcome, and comorbidities. Both sgRNAs were detected in all the three types of samples, with longest duration of 25, 13, and 17 days for E sgRNA, and 32, 28, and 17 days for orf7a sgRNA in throat, gut, and plasma, respectively. A total of 95% (57/60) of patients had no E sgRNA detected after 10 days post treatment, though 86% of them were still E RNA positive. High correlation on titer was observed between sgRNA encoding E and orf7a gene. sgRNA showed similar variation in the standard care and Lopinavir-Ritonavir group. Patients with diabetes and heart diseases showed higher pharyngeal E sgRNA at the first day (P = 0.016 and 0.013, respectively) but no difference at five days after treatment, compared with patients without such commodities. Patients with hypertension and cerebrovascular diseases showed no difference in the pharyngeal sgRNA levels at both one and five days after treatment, compared with patients without these two commodities. E sgRNA levels in the initial infection showed no correlation with the serum antibody against spike, nucleoprotein, and receptor binding domains at ten days later. sgRNA lasted a long period in COVID-19 patients and might have little effect on humoral response.  相似文献   

2.
This paper aimed to analyze antibody responses to SARS-CoV-2 in various populations. Two hundred and six COVID-19 patients, 46 convalescent patients, and 270 healthy population were enrolled. Antibodies against nucleocapsid protein (N) and spike protein's receptor-binding domain (RBD), and neutralizing antibody were detected. The results demonstrated both anti-N and anti-RBD antibodies could be detected in about 80% of COVID-19 patients and 90% of convalescent patients, while no antibodies could be detected in some convalescents and patients even after 14 days post-onset of symptoms. The level of anti-RBD antibody strongly correlated with the neutralizing activity of sera from these two cohorts. The titer of neutralizing antibody was lower in convalescents than that in active COVID-19 patients. In addition, the titer of neutralizing antibody was less than 1:80 in none of the severe COVID-19 patients, 18.8% in non-severe COVID-19 patients, and 32.6% in convalescents. The study suggests that the level of anti-RBD antibody is closely related to neutralization activity in COVID-19 patients and convalescents. Some SARS-CoV-2-infected cases trigger a weak antiviral immune response, and the level of neutralizing antibody may have a faster decay rate.  相似文献   

3.
The host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors. We observed 55 miRNAs that were altered in COVID-19 patients during early-stage disease, with the inflammatory miR-31-5p the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-423-5p, miR-23a-3p and miR-195-5p) independently classified COVID-19 cases with an accuracy of 99.9%. In a ferret COVID-19 model, the three-miRNA signature again detected SARS-CoV-2 infection with 99.7% accuracy, and distinguished SARS-CoV-2 infection from influenza A (H1N1) infection and healthy controls with 95% accuracy. Distinct miRNA profiles were also observed in COVID-19 patients requiring oxygenation. This study demonstrates that SARS-CoV-2 infection induces a robust host miRNA response that could improve COVID-19 detection and patient management.  相似文献   

4.
Patients with coronavirus disease 2019 (COVID-19) often exhibit diverse disease progressions associated with various infectious ability, symptoms, and clinical treatments. To systematically and thoroughly understand the heterogeneous progression of COVID-19, we developed a multi-scale computational model to quantitatively understand the heterogeneous progression of COVID-19 patients infected with severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). The model consists of intracellular viral dynamics, multicellular infection process, and immune responses, and was formulated using a combination of differential equations and stochastic modeling. By integrating multi-source clinical data with model analysis, we quantified individual heterogeneity using two indexes, i.e., the ratio of infected cells and incubation period. Specifically, our simulations revealed that increasing the host antiviral state or virus induced type I interferon (IFN) production rate can prolong the incubation period and postpone the transition from asymptomatic to symptomatic outcomes. We further identified the threshold dynamics of T cell exhaustion in the transition between mild-moderate and severe symptoms, and that patients with severe symptoms exhibited a lack of naïve T cells at a late stage. In addition, we quantified the efficacy of treating COVID-19 patients and investigated the effects of various therapeutic strategies. Simulations results suggested that single antiviral therapy is sufficient for moderate patients, while combination therapies and prevention of T cell exhaustion are needed for severe patients. These results highlight the critical roles of IFN and T cell responses in regulating the stage transition during COVID-19 progression. Our study reveals a quantitative relationship underpinning the heterogeneity of transition stage during COVID-19 progression and can provide a potential guidance for personalized therapy in COVID-19 patients.  相似文献   

5.
Millions of people infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been diagnosed with coronavirus infectious disease 2019 (COVID-19). The prevalence and severity of COVID-19 differ between sexes. To explain these differences, we analyzed clinical features and laboratory values in male and female COVID-19 patients. The present study included a cohort of 111 people, i.e. 36 COVID-19 patients, 54 sex- and age-matched common viral community-acquired pneumonia (CAP) patients, and 21 healthy controls. Monocyte counts, lymphocyte subset counts, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), and C-reactive protein (CRP) levels in the peripheral blood were analyzed. Higher Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, monocyte counts, and CRP and ALT levels were found in male COVID-19 patients. Decreased lymphocyte subset counts and proportions were observed in COVID-19 patients, except for the CD3+ and CD8+ T cell proportions. The lower CD4+ T cell proportions and higher CD8+ T cell proportions were observed in male and severe COVID-19 patients and the differences were independent of estrogen level. The CD4+ T cell proportion was negatively associated with the CD8+ T cell proportion in male COVID-19 patients; this correlation was non-significant in females. Our work demonstrates differences between sexes in circulating monocyte counts and CD4+ T cell and CD8+ T cell proportions in COVID-19 patients, independent of estrogen levels, are associated with the clinical manifestations in COVID-19 patients with high specificity.  相似文献   

6.
《Cell》2021,184(18):4713-4733.e22
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   

7.
COVID-19 disease, caused by infection with SARS-CoV-2, is related to a series of physiopathological mechanisms that mobilize a wide variety of biomolecules, mainly immunological in nature. In the most severe cases, the prognosis can be markedly worsened by the hyperproduction of mainly proinflammatory cytokines, such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, preferentially targeting lung tissue. This study reviews published data on alterations in the expression of different cytokines in patients with COVID-19 who require admission to an intensive care unit. Data on the implication of cytokines in this disease and their effect on outcomes will support the design of more effective approaches to the management of COVID-19.  相似文献   

8.
Su  Bin  Yin  Jiming  Lin  Xingguang  Zhang  Tiantian  Yao  Xiao  Xu  Ying  Lu  Yao  Wang  Wenzhi  Liu  Kun  Zhang  Jie  Xie  Liangzhi  Jin  Ronghua  Feng  Yingmei 《中国科学:生命科学英文版》2021,64(7):1193-1196
正Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has caused the global outbreak of coronavirus disease 2019(COVID-19). By far, more than 35 million people had been infected by SARS-CoV-2, resulting in more than 1 million deaths globally. It is well recognized that SARSCoV-2 preferentially attacks pulmonary epithelial cells,leading to acute respiratory distress syndrome(ARDS).Remarkably,  相似文献   

9.
10.
11.
12.
13.
Kong  Wen-Hua  Zhao  Rong  Zhou  Jun-Bo  Wang  Fang  Kong  De-Guang  Sun  Jian-Bin  Ruan  Qiong-Fang  Liu  Man-Qing 《中国病毒学》2020,35(6):752-757
Virologica Sinica - The immense patient number caused by coronavirus disease 2019 (COVID-19) global pandemic brings the urge for more knowledge about its immunological features, including the...  相似文献   

14.
BackgroundThe immunological factors involved in protection against the disease caused by SARS-CoV-2 are insufficiently defined and understood. However, previous knowledge pertaining to the related SARS virus and other human coronaviruses may prove useful. Population-based serosurveys measuring anti-SARS-CoV-2 antibodies may provide a pattern for estimating infection degrees and observing the development of the epidemic. In this study, we aimed to investigate the persistence of antibody against the SARS-CoV-2 in recovered patients in Al Madinah region of Saudi Arabia.Materials and methodsA total of 150 recovered COVID-19 patients participated in this study. All the patients tested positive for the presence of SARS-CoV-2 RNA, using qualitative RT-PCR. An ELISA was used to measure anti-Spike (S) IgG antibodies in serum samples and screen for their persistence at various time points post-infection.ResultsThe patients were categorized as asymptomatic (27.3%), mild (28%) and moderate (44.7%) according to the disease severity. Amongst them, 35.3% were females (n = 53) and 64.7% were males (n = 97). Significant anti-S IgG antibody levels were observed among the different groups, with the patients in moderate group exhibiting the highest levels followed by the mild group; while the lowest levels were detected among the asymptomatic. There was a significant positive correlation between the patients’ age and anti-S IgG antibody concentrations (Pearson r = 0.45; p < 0.001).ConclusionOur findings provide a solid evidence to support the use of an anti-S IgG ELISA as a diagnostic tool to indicate SARS-CoV-2 infection. IgG seropositivity was sustained in recovered patients up to a hundred days' post-infection, the latest time point for antibody measurement in our study. Ours is the first report in Saudi Arabia to investigate the durability of humoral immune response in recovered COVID-19 patients.  相似文献   

15.
BackgroundData regarding outcomes among patients with cancer and co-morbid cardiovascular disease (CVD)/cardiovascular risk factors (CVRF) after SARS-CoV-2 infection are limited.ObjectivesTo compare Coronavirus disease 2019 (COVID-19) related complications among cancer patients with and without co-morbid CVD/CVRF.MethodsRetrospective cohort study of patients with cancer and laboratory-confirmed SARS-CoV-2, reported to the COVID-19 and Cancer Consortium (CCC19) registry from 03/17/2020 to 12/31/2021. CVD/CVRF was defined as established CVD or no established CVD, male ≥ 55 or female ≥ 60 years, and one additional CVRF. The primary endpoint was an ordinal COVID-19 severity outcome including need for hospitalization, supplemental oxygen, intensive care unit (ICU), mechanical ventilation, ICU or mechanical ventilation plus vasopressors, and death. Secondary endpoints included incident adverse CV events. Ordinal logistic regression models estimated associations of CVD/CVRF with COVID-19 severity. Effect modification by recent cancer therapy was evaluated.ResultsAmong 10,876 SARS-CoV-2 infected patients with cancer (median age 65 [IQR 54–74] years, 53% female, 52% White), 6253 patients (57%) had co-morbid CVD/CVRF. Co-morbid CVD/CVRF was associated with higher COVID-19 severity (adjusted OR: 1.25 [95% CI 1.11–1.40]). Adverse CV events were significantly higher in patients with CVD/CVRF (all p<0.001). CVD/CVRF was associated with worse COVID-19 severity in patients who had not received recent cancer therapy, but not in those undergoing active cancer therapy (OR 1.51 [95% CI 1.31–1.74] vs. OR 1.04 [95% CI 0.90–1.20], pinteraction <0.001).ConclusionsCo-morbid CVD/CVRF is associated with higher COVID-19 severity among patients with cancer, particularly those not receiving active cancer therapy. While infrequent, COVID-19 related CV complications were higher in patients with comorbid CVD/CVRF. (COVID-19 and Cancer Consortium Registry [CCC19]; NCT04354701).  相似文献   

16.
17.
对1例新型冠状病毒肺炎疫情流行早期的无症状感染者临床标本进行SARS-CoV-2实验室鉴定和全基因组测定,在分子水平了解新型病毒的基因特点和变异情况,追溯病毒潜在来源.实时荧光定量PCR扩增丽水市庆元县首例确诊患者密切接触者的痰液标本SARS-CoV-2核酸,阳性RNA逆转录为cDNA构建文库后进行基于NGS的宏基因组深度测序,生物学软件分析处理数据.该密接无任何症状及体征,痰液标本SARS-CoV-2核酸阳性.测序数据包含有足够的病毒序列,组装成功后hCoV-19/Lishui/LS556/2020长29 887bp,G+C含量37.99%,在ORF1ab和N区域发现4个SNP,对应1个错义突变和3个同义突变.LS556与SARS-CoV-2参考序列核苷酸/氨基酸同源性在99.2%/97.4%以上,不同序列之间存在4~17个核苷酸差异,与蝙蝠病毒RaTG13核苷酸差异仅3.7%,存在1141个SNP,与穿山甲病毒Guangdong/1相似性90.9%.LS556属于β冠状病毒Lineage B谱系,与LS003和ZJU-06共享完全相同的病毒,与蝙蝠/穿山甲冠状病毒进化上最相关.结合流行病学、核酸诊断、病毒溯源判定其为无症状感染者.LS556组成和结构符合SARS-CoV-2典型的基因特征,为高覆盖率序列,在流行早期与其他SARS-CoV-2基因组具有高度的同一性,突变率保持在较低水平,多数导致氨基酸位点保守置换.  相似文献   

18.
Aerobiologia - The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina...  相似文献   

19.
The year 2020 witnessed an unpredictable pandemic situation due to novel coronavirus (COVID-19) outbreaks. This condition can be more severe if the patient has comorbidities. Failure of viable treatment for such viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to lack of identification. Thus, modern and productive biotechnology-based tools are being used to manipulate target genes by introducing the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system. Moreover, it has now been used as a tool to inhibit viral replication. Hence, it can be hypothesized that the CRISPR/Cas system can be a viable tool to target both the SARS-CoV-2 genome with specific target RNA sequence and host factors to destroy the SARS-CoV-2 community via inhibition of viral replication and infection. Moreover, comorbidities and COVID-19 escalate the rate of mortality globally, and as a result, we have faced this pandemic. CRISPR/Cas-mediated genetic manipulation to knockdown viral sequences may be a preventive strategy against such pandemic caused by SARS-CoV-2. Furthermore, prophylactic antiviral CRISPR in human cells (PAC-MAN) along with CRISPR/Cas13d efficiently degrades the specific RNA sequence to inhibit viral replication. Therefore, we suggest that CRISPR/Cas system with PAC-MAN could be a useful tool to fight against such a global pandemic caused by SARS-CoV-2. This is an alternative preventive approach of management against the pandemic to destroy the target sequence of RNA in SARS-CoV-2 by viral inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号