首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Abstract

The aim of this work was the preparation of four new peptide nucleic acid (PNA) monomer backbone by reductive animation of Nα-Boc-protected chiral amino aldehydes, derived from Leu, Phe, Tyr(Bzl), and Thr(Bzl), with methyl glycinate. To the crude 2-substituted methyl N-(2-Boc-aminoethyl)glycinates obtained, thymin-1-ylacetic acid was coupled using TBTU procedure in a one-pot reaction. PNA monomers were isolated and characterized.  相似文献   

2.
Two peptide nucleic acids (PNAs) containing three adjacent modified chiral monomers (chiral box) were synthesized. The chiral monomers contained either a C2- or a C5-modified backbone, synthesized starting from D- and L-arginine, respectively (2D- and 5L-PNA). The C2-modified chiral PNA was synthesized using a submonomeric strategy to avoid epimerization during solid-phase synthesis, whereas for the C5-derivative, the monomers were first obtained and then used in solid-phase synthesis. The melting temperature of these PNA duplexes formed with the full-match or with single-mismatch DNA were measured both by UV and by CD spectroscopy and compared with the unmodified PNA. The 5L-chiral-box-PNA showed the highest T(m) with full-match DNA, whereas the 2D-chiral-box-PNA showed the highest sequence selectivity. The PNA were spotted on microarray slides and then hybridized with Cy5-labeled full match and mismatched oligonucleotides. The results obtained showed a signal intensity in the order achiral >2D-chiral box >5L-chiral box, whereas the full-match/mismatch selectivity was higher for the 2D chiral box PNA.  相似文献   

3.
Peptide nucleic acid (PNA) is a DNA analog able to form hybridization complexes with complementary DNA or RNA strands. Many PNAs have been described in recent years, particularly chiral PNA analogs. Chiral heteronucleotide ONA (Orn backbone PNA) is an important tool in the antisensing field, but was not been fully explored yet. In the present work, we performed studies toward the synthesis of chiral heteronucleotide ONA sequences by utilizing a Fmoc/Boc-based submonomer approach on solid support. The desired oligomers with different nucleic content and length were obtained in very good yields and high purity. Specific binding to the complimentary ssDNA oligomers was demonstrated.  相似文献   

4.
The synthesis of a chiral peptide nucleic acid (PNA), which is composed of N-aminoethyl-cis-4-nucleobase-L-proline units, was described. The chiral PNA monomers containing all four nucleobases (A, T, C and G) were steroselectively prepared. The x-ray diffraction data from a single crystal confirmed the configuration of a key intermediate. Binding activity of the oligomers with their complementary DNA targets was also investigated.  相似文献   

5.
The synthesis of a chiral peptide nucleic acid (PNA), which is composed of N-aminoethyl-cis-4-nucleobase-L-proline units, was described. The chiral PNA monomers containing all four nucleobases (A. T, C and G) were steroselectively prepared. The x-ray diffraction data from a single crystal confirmed the configuration of a key intermediate. Binding activity of the oligomers with their complementary DNA targets was also investigated.  相似文献   

6.
Peptide nucleic acid (PNA) monomers with a methyl group at the β-position have been synthesized. The modified monomers were incorporated into PNA oligomers using Fmoc chemistry for solid-phase synthesis. Thermal denaturation and circular dichroism (CD) studies have shown that PNA containing the S-form monomers was well suited to form a hybrid duplex with DNA, whose stability was comparable to that of unmodified PNA–DNA duplex, whereas PNA containing the R-form monomers was not.  相似文献   

7.
Pseudo-complementary peptide nucleic acid (pcPNA) is a DNA analog in which modified DNA bases 2,6-diaminopurine (D) and 2-thiouracil (U(s)) 'decorate' a poly[N-(2-aminoethyl)glycine] backbone, together with guanine (G) and cytosine (C). One of the most significant characteristics of pcPNA is its ability to effect double-duplex invasion of predetermined DNA sites inducing various changes in the biological and the physicochemical properties of the DNA. This protocol describes solid-phase synthesis of pcPNA. The monomers for G and C are commercially available, but the monomers for D and U(s) need to be synthesized (or can be ordered to custom synthesis companies). Otherwise, the procedure is the same as that employed for Boc-strategy synthesis of conventional PNA. This protocol, if the synthesis of D and U(s) monomers is not factored in, takes approximately 7 d to complete.  相似文献   

8.
A convenient route for the preparation of peptide nucleic acid (PNA) monomers is described. Two different base-labile protecting groups (2-cyanoethyl and 4-nitrophenylethyl) are described for the protection of the carboxylic function of the N-(2-aminoethyl)glycine backbone during the assembly of the monomers. These groups are selectively removed yielding the desired PNA monomers in high yields, the 2-cyanoethyl group being faster and cleaner than the 4-nitrophenylethyl group. The use of PNA monomers for the preparation of DNA–PNA chimeric molecules is also discussed.  相似文献   

9.
In an attempt to improve physico-chemical and biological properties of peptide nucleic acids (PNAs), particularly water solubility and cellular uptake, the synthesis of chimeric oligomers consisted of PNA and phosphono-PNA analogues (pPNAs) bearing the four natural nucleobases has been accomplished. To produce these chimeras, pPNA monomers of two types containing N-(2-hydroxyethyl)phosphonoglycine, or N-(2-aminoethyl)phosphonoglycine backbone, were used in conjunction with PNA monomers representing derivatives of N-(2-aminoethyl)glycine, or N-(2-hydroxyethyl)glycine. The oligomers obtained were composed of either PNA and pPNA stretches or alternating PNA and pPNA monomers. The examination of hybridization properties of PNA-pPNA chimeras to DNA and RNA complementary strands in comparison with pure PNAs, and pPNAs as well as DNA-pPNA hybrids and DNA fragments confirmed that these chimeras form stable complexes with complementary DNA and RNA fragments. They were found to be resistant to degradation by nucleases. All these properties together with good solubility in water make PNA-pPNA hybrids promising for further evaluation as potential therapeutic agents.  相似文献   

10.
11.
Summary A convenient route for the preparation of peptide nucleic acid (PNA) monomers is described. Two different baselabile protecting groups (2-cyanoethyl and 4-nitrophenylethyl) are described for the protection of the carboxylic function of theN-(2-aminoethyl)glycine backbone during the assembly of the monomers. These groups are selectively removed yielding the desired PNA monomers in high yields, the 2-cyanoethyl group being faster and cleaner than the 4-nitrophenylethyl group. The use of PNA monomers for the preparation of DNA-PNA chimeric molecules is also discussed.  相似文献   

12.
Invasion of two PNA strands to double-stranded DNA is one of the most promising methods to recognize a predetermined site in double-stranded DNA (PNA = peptide nucleic acid). In order to facilitate this 'double-duplex invasion', a new type of PNA was prepared by using chiral PNA monomers in which a nucleobase was bound to the alpha-nitrogen of N-(2-aminoethyl)-d-lysine. These positively charged monomer units, introduced to defined positions in Nielsen's PNAs (poly[N-(2-aminoethyl)glycine] derivatives), promoted the invasion without impairing mismatch-recognizing activity. When pseudo-complementary nucleobases 2,6-diaminopurine and 2-thiouracil were bound to N-(2-aminoethyl)-d-lysine, the invasion successfully occurred even at highly G-C-rich regions [e.g. (G/C)7(A/T)3 and (G/C)8(A/T)2] which were otherwise hardly targeted. Thus, the scope of sequences available as the target site has been greatly expanded. In contrast with the promotion by the chiral PNA monomers derived from N-(2-aminoethyl)-d-lysine, their l-isomers hardly invaded, showing crucial importance of the d-chirality. The promotion of double-duplex invasion by the chiral (d) PNA monomer units was ascribed to both destabilization of PNA/PNA duplex and stabilization of PNA/DNA duplexes.  相似文献   

13.
肽核酸(peptide nucleic acid,PNA)阵列   总被引:1,自引:0,他引:1  
鲁艳芹  韩金祥 《生命科学》2003,15(4):200-202
肽核酸(PNA)以N—(2—氨基乙基)甘氨酸替代DNA分子中的磷酸戊糖骨架。它能特异性地识别与DNA、RNA所形成的杂交体。PNA—DNA、PNA—RNA的热稳定性要比相应的DNA—DNA、DNA—RNA高,而且PNA识别单碱基的能力强于DNA和RNA,使之在微阵列,尤其是SNP检测领域有着广泛的应用前景。本文简述了PNA阵列从探针设计、阵列合成、杂交和检测的全过程。  相似文献   

14.
Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.  相似文献   

15.
16.
A new simple solid-phase method has been developed for synthesizing Boc-protected peptide nucleic acid (PNA) monomers. An immobilized backbone 3 was built on Expansin® resin using an ester disulphide handle: 2-hydroxypropyl-dithio-2′-isobutyric acid (HPDI). The base acetic acids of thymine 5 , Z-cytosine 9 , Z-adenine 12 , and 6-O-benzyl guanine 17 were prepared and coupled to the immoblized backbone. The HPDI handle was cleaved under mild conditions by cyanolysis or assisted hydrolysis with tris(2-carboxyethyl)phosphine (TCEP) to give undamaged PNA monomers. These monomers were coupled to form oligomers by solid-phase method with another disulphide linkage: aminoethyldithio-2-isobutyric acid (AEDI) grafted on an amino-functionalized TentaGel® resin, using in situ neutralization and TBTU as activating reagent. Final cleavage of the AEDI linker gave PNA bearing a cysteamide residue that could be useful for optimizing PNA properties. Oligomers of up to 16 residues long were assembled. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Synthesis and properties of DNA-PNA chimeric oligomers.   总被引:1,自引:0,他引:1       下载免费PDF全文
Adenine, thymine and cytosine PNA monomers have been prepared using 3-amino-1,2-propanediol as a starting material. The benzoyl group was used to protect the exocyclic amines of the heterocyclic bases of A and C PNA monomers and the backbone primary amine was protected with the monomethoxytrityl group. The thymine and cytosine PNA monomers were used in conjunction with standard DNA synthesis monomers to produce chimeric PNA DNA (PDC) oligomers. Ultraviolet melting studies confirmed that these oligomers form stable hybrids with complementary DNA strands and that mismatches in the DNA but more so in the PNA sections lead to duplex destabilisation.  相似文献   

18.
Peptide nucleic acids (PNAs) make a promising group of DNA analogues. The backbone of typical PNA oligomers is composed of N-(2-aminoethyl)glycine units, linked by the peptide bonds. The backbone secondary amine groups are acylated with carboxyalkyl derivatives of nucleobases. One of the PNA synthesis step causing some problems is the acylation of the monomer backbone with the nucleobase derivatives. The aim of the study was to compare the efficiency of various coupling systems in the acylation. Simple model compounds (piperidine and proline) were used, as well as equimolar amounts of the coupling reagents. Selected systems based on carbodiimides, aminium or phosphonium salts, mixed anhydride, and active esters were tested.  相似文献   

19.
Seo YJ  Lim J  Lee EH  Ok T  Yoon J  Lee JH  Lee HS 《Nucleic acids research》2011,39(16):7329-7335
Peptide nucleic acids (PNA) are one of the most widely used synthetic DNA mimics where the four bases are attached to a N-(2-aminoethyl)glycine (aeg) backbone instead of the negative-charged phosphate backbone in DNA. We have developed a chimeric PNA (chiPNA), in which a chiral GNA-like γ(3)T monomer is incorporated into aegPNA backbone. The base pair opening kinetics of the aegPNA:DNA and chiPNA:DNA hybrid duplexes were studied by NMR hydrogen exchange experiments. This study revealed that the aegPNA:DNA hybrid is much more stable duplex and is less dynamic compared to DNA duplex, meaning that base pairs are opened and reclosed much more slowly. The site-specific incorporation of γ(3)T monomer in the aegPNA:DNA hybrid can destabilize a specific base pair and its neighbors, maintaining the thermal stabilities and dynamic properties of other base pairs. Our hydrogen exchange study firstly revealed the unique kinetic features of base pairs in the aegPNA:DNA and chiPNA:DNA hybrids, which will provide an insight into the development of methodology for specific DNA recognition using PNA fragments.  相似文献   

20.
A chiral peptide nucleic acid (PNA) beacon containing a C-5 modified monomer based on L-lysine was synthesized. The terminal amino group of the lysine side chain was linked to a spacer for future applications on surfaces. The PNA beacon bears a carboxyfluorescein fluorophore and a dabcyl quencher at opposite ends. The DNA binding properties were compared with those of a homologous PNA beacon containing only achiral monomers. Both beacons underwent a fluorescence increase in the presence of complementary DNA, with higher efficiency and higher selectivity (evaluated using single mismatched DNA sequences) observed for the chiral monomer containing PNA. Ion exchange (IE) HPLC with fluorimetric detection was used in combination with the beacon for the selective detection of complementary DNA. A fluorescent peak corresponding to the PNA beacon:DNA duplex was observed at a very low detection limit (1 nM). The discriminating capacity of the chiral PNA beacon for a single mismatch was found to be superior to those observed with the unmodified one, thus confirming the potency of chirality for increasing the affinity and specificity of DNA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号