首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis strain Marburg was grown exponentially with a doubling time of 65 min. To follow the time course of various cell cycle events, cells were collected by agar filtration and were then classified according to length. The DNA replication cycle was determined by a quantitative analysis of radioautograms of tritiated thymidine pulse labeled cells. The DNA replication period was found to be 45 min. This period is preceded and followed by periods without DNA synthesis of about 10 min.The morphology and segregation of nucleoplasmic bodies was studied in thin sections. B. subtilis contains two sets of genomes. DNA replication and DNA segregation seem to go hand in hand and DNA segregation is completed shortly after termination of DNA replication.Cell division and cell separation were investigated in whole mount preparations (agar filtration) and in thin sections. Cell division starts about 20 min after cell birth; cell separation starts at about 45 min and before completion of the septum.  相似文献   

2.
Summary Phage mutants were isolated with amber mutations in genes necessary for establishment of lysogeny. These mutants form turbid plaques on su + strain 527R1 and clear plaques of different types on LT2. According to complementation tests, fourteen mutants fall in the c 2 gene, four in the c 3 gene but no amber mutants were found belonging to the c 1 gene. Pulse labelling experiments to follow DNA synthesis after phage infection were done with the mutants classified by complementation tests. Furthermore the labelling experiments demonstrated that the nonleaky c 3 amber mutants displayed the same DNA synthesis pattern as c 1 missense mutants. Since these c 3 amber mutants complement missense c 1 mutants it is concluded that the c 3 and c 1 genes must act together for the first transient repression of DNA synthesis, i.e., seven minutes after infection. It is suggested that clear plaque forming c 1 amber mutants cannot be isolated because of polarity leading to defectivity of lysogenic as well as of lytic functions.The majority of the experiments presented are a part of the dissertation of H. D. Dopatka at the University of Göttingen.  相似文献   

3.
4.
Summary Mutants of Escherichia coli K12 that are partially or totally defective in induction of major heat-shock proteins and cannot grow at high temperature (42° C) were isolated by localized mutagenesis. These mutants carry a single mutation in the gene htpR (formerly hin) located at min 76 on the E. coli genetic map. Some mutants exhibit delayed (partial) induction of heat-shock proteins or require a higher temperature for induction than the wild type, whereas others are not induced under any of these conditions. The maximum temperature that allows growth varies among different mutants and is correlated with the residual induction capacity. Temperature-resistant revertants obtained from each mutant are fully or partially recovered in heat-shock induction. These results indicate that the inability of htpR mutants to grow at high temperature is due to the defect in heat-shock induction. In addition, a couple of mutants was found that produce significantly higher amounts of heat-shock proteins even at 30° C.The htpR gene has been cloned into plasmid pBR322 using the above mutants, and was localized to a DNA segment of 1.6 kilobase pairs. The mutants harboring certain palsmids that carry a part of htpR produce temperature-resistant recombinants at high frequency. This permits further localization of mutations within the htpR gene. Analysis of proteins encoded by each of the recombinant plasmids including the one carrying a previously isolated amber mutation (htpR165) led to the identification of a protein with an apparent molecular weight of about 36,000 daltons as the htpR gene product.  相似文献   

5.
Among other temperature-sensitive mutants ofLactobacillus acidophilus the mutant “ts 9” with temperature-sensitive initiation of DNA synthesis was isolated. In this mutant, the course of DNA synthesis under non-permissive conditions proceeds in two phases. During the first 90–120 min, a slight increase (20–50%) of DNA content takes place. Then during further incubation at 40°C, the capacity for initiation of further DNA synthesis increases and a second round of DNA synthesis starts after 3–4h of incubation. The initiation of DNA synthesis is prevented by chloramphenicol and the preceding lag is temperature-dependent. It is concluded that an accumulation of an initiation factor is required for the onset of a new cycle of DNA synthesis and that in thets 9 mutant this accumulation is inhibited at non-permissive temperature.  相似文献   

6.
Summary Three independen relB mutants were studied. During amino acid starvation they all accumulate RNA and produce an inhibitor of in vitro protein synthesis; after starvation growth is retarded for hours. The mutants differ in the degree to which the common phenotype is expressed, but the characteristic thermolability of the inhibitor is the same. The phenotype of the relB mutants is accentuated by amber suppressors, and this effect is counteracted by a mutation, pus-1 that maps at 19.5 min near aroA.  相似文献   

7.
We examined several aspects of bacteriophage Mu development in Escherichia coli strains that carry mutations in the polA structural gene for DNA polymerase I (PolI). We found that polA mutants were markedly less efficient than PolI wild-type (PolI+) strains in their capacity to form stable Mu lysogens and to support normal lytic growth of phage Mu. The frequency of lysogenization was determined for polA mutants and their isogenic PolI+ derivatives, with the result that mutants were lysogenized 3 to 8 times less frequently than were PolI+ cells. In one-step growth experiments, we found that phage Mu grew less efficiently in polA cells than in PolI+ cells, as evidenced by a 50 to 100% increase in the latent period and a 20 to 40% decrease in mean burst size in mutant cells. A further difference noted in infected polA strains was a 10-fold reduction in the frequency of Mu-mediated transposition of chromosomal genes to an F plasmid. Pulse labeling and DNA-DNA hybridization assays to measure the rate of phage Mu DNA synthesis after the induction of thermosensitive prophages indicated that phage Mu replication began at about the same time in both polA and PolI+ strains, but proceeded at a slower rate in polA cells. We conclude that PolI is normally involved in the replication and integration of phage Mu. However, since phage Mu does not exhibit an absolute requirement for normal levels of PolI, it appears that residual PolI activity in the mutant strains, other cellular enzymes, or both can partially compensate for the absence of normal PolI activity.  相似文献   

8.
Martin L. Pato  Claudia Reich 《Cell》1982,29(1):219-225
Transposition of genetic elements involves coupled replication and integration events catalyzed in part by a class of proteins called transposases. We have asked whether the transposase activity of bacteriophage Mu (the Mu A protein) is stable and capable of catalyzing multiple rounds of coupled replication/integration, or whether its continued synthesis is required to maintain Mu DNA replication. Inhibition of protein synthesis during the lytic cycle with chloramphenicol inhibited Mu DNA synthesis with a half-life of approximately 3 min, demonstrating a need for continued protein synthesis to maintain Mu DNA replication. Synthesis of specific Mu-encoded proteins was inhibited by infecting a host carrying a temperature-sensitive suppressor, at permissive temperature, with Mu amber phages, then shifting to nonpermissive temperature. When Aam phages were used, Mu DNA replication was inhibited with kinetics essentially identical to those with chloramphenicol addition; hence, it is likely that continued synthesis of the Mu A protein is required to maintain Mu DNA replication. The data suggest that the activity of the Mu A protein is unstable, and raise the possibility that the Mu A protein and other transposases may be used stoichiometrically rather than catalytically.  相似文献   

9.
Localization and regulation of bacteriophage Mu promoters.   总被引:10,自引:9,他引:1       下载免费PDF全文
Mu promoters active during the lytic cycle were located by isolating RNA at various times after induction of Mu prophages, radiolabeling it by capping in vitro, and hybridizing it to Mu DNA fragments on Southern blots. Signals were detected from four new promoters in addition to the previously characterized Pe (early), PcM (repressor), and Pmom (late) promoters. A major signal upstream of C was first observed at 12 min and intensified thereafter with RNA from cts and C amber but not replication-defective prophages; these characteristics indicate that this signal arises from a middle promoter, which we designate Pm. With 20- and 40-min RNA, four additional major signals originated in the C-lys, F-G-I, N-P, and com-mom regions. These signals were missing with RNA from C amber and replication-defective prophages and therefore reflected the activity of late promoters, one of which we presume was Pmom. Uninduced lysogens showed weak signals from five regions, one from the early regulatory region, three between genes B and lys, and one near the late genes K, L, and M. The first of these probably resulted from PcM activity; the others remain to be identified.  相似文献   

10.
11.
Summary The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungusUstilago maydis after incubation at the restrictive temperature (32° C) for eight hours. Mutantsts-220,ts-207,ts-432 andts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutantsts-20,tsd 1-1,ts-84 andpol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutantpol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutantts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32°C.tsd 1-1 andts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis with correlates to increasing UV sensitivity of these strains on incubation at 32° C. Apol 1-1ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.  相似文献   

12.
A I Bukhari  S Froshauer 《Gene》1978,3(4):303-314
We have isolated mutants of bacteriophage Mu carrying the X mutations caused by the insertion of cam (Tn9), a transposon for chloramphenicol resistance. The Mu X cam mutants were obtained by selecting for heat-resistant survivors of a Mucts62, P1cam dilysogen. Like the previously described X mutants, Mu X cam mutants are defective prophages which can be excised from the host DNA at a frequency of 10(-5) to 10(-7) per cell. Tn9 insertions in Mu X cam mutants are located within 5000 base pairs of the left end of Mu DNA in a region that controls early replication functions of Mu. There is one EcoRI cleavage site in Tn9. The Tn9 transposon itself can be excised precisely from the Mu X cam mutants to generate wild type Mu. In most Mu X cam mutants, precise excision of Tn9 occurs at a low frequency (10(-6) per cell), whereas in some, the frequency is higher (10(-4) per cell). Mu X cam prophages can replicate after induction with the help of wild type Mu. The lysates containing Mu X cam particles, however, fail to transduce chloramphenicol resistance at a high frequency; Mu X cam mutants apparently have a cis dominant defect in integration.  相似文献   

13.
14.
Summary Seven temperature-sensitive mutants have been isolated in Saccharomyces cerevisiae which show a reproducible defect in DNA synthesis at the restrictive temperature. One of these is allelic with rnal1 (Hartwell et al., 1970) but the remaining mutants define six complementation groups and probably represent six different genes. The gene symbol dds (for depressed DNA synthesis) is proposed.At the restrictive temperature, rnal1-2, dds2-1 and dds6-1 show a rapid and almost total cessation of DNA and RNA synthesis, whilst protein synthesis continues for several hours. The remaining dds mutants show a reduced rate of DNA synthesis from the time of temperature shift (dds1, dds3, dds4) or a cessation of DNA synthesis at a later time (dds5). In some cases, RNA synthesis is affected concomitantly with, or soon after, the depression in DNA synthesis. Possible reasons for the phenotypes of these mutants, and for the relative absence of yeast mutants which are unambiguously and specifically affected in DNA synthesis, are discussed.In addition, we report the isolation of seven new alleles of known cdc genes and ten new mutants with a cell cycle phenotype that complement those already known.  相似文献   

15.
Summary A system where the transposition of MupApl (a derivative of phage Mu carrying a determinant coding for ampicillin resistance) is followed from the small plasmid pML2 into the conjugative plasmid R388 has been used to investigate the influence on Mu transposition of B, an early Mu gene which is involved in normal phage DNA synthesis. In the absence of active B protein a low level (about 1% of normal) of transposition was detected. Roughly a third of these transpositional events was found to lead to the formation of cointegrate DNA structures which were shown to consist of R388, two complete copies of Mu and part only of pML2. The pML2 deletions vary in size but all those investigated appear to originate at an end of Mu. An explanation of these observations is proposed which envisages the B protein as part of the normal transposition complex.  相似文献   

16.
Temperature sensitive mutations affecting RNA synthesis in Escherichia coli   总被引:2,自引:0,他引:2  
Summary A streptomycin method has been used for the isolation of mutants with RNA synthesis inhibited at elevated temperature. The method is based on the observation that streptomycin kills bacteria with normal RNA synthesis and does not affect the cells with inhibited synthesis of RNA. This selection method increases the yield of temperature sensitive mutants by a factor 10–20, the amount of mutants with disturbed RNA synthesis is increased 3–5 fold as compared with the method of replicas.Several types of mutants were found among the temperature sensitive strains: those possessing temperature sensitivity of one, two or three types of cellular macromolecules DNA, RNA and protein. The screening among the mutants with affected RNA synthesis revealed a strain ts-19 showing low RNA polymerase activity in cell extracts and partially purified RNA polymerase preparations. The presented evidence suggests that ts-19 mutation affects the structural gene of one of the RNA polymerase subunits.The mapping of the corresponding locus indicated that it was located between the str and thy loci in E. coli K 12 chromosome at a distance of about 20 recombination units from the first locus.  相似文献   

17.
A study of the properties of deletion mutants at the 3’ end ofA, the gene encoding the transposase protein of phage Mu, shows that the mutants are defective in the high-frequency non-replicative transposition observed early after Mu infection as well as the high-frequency replicative transposition observed during Mu lytic growth. They show near-normal levels of lysogenization, low frequency transposition and precise excision. The mutants behave as if they are “blind” to the presence of Mu B, a protein whose function is essential for the high frequency of both replicative and non-replicative Mudna transposition. We have sequenced these deletion mutants as well as the amber mutant A 7110 which is known to be defective in replicative transposition.A 7110 maps at the 3’ end of geneA. We suggest that the carboxyl-terminal region of the A-protein is involved in protein-protein interactions, especially with the B-protein. We also show in this study that mutations upstream of the Shine-Dalgarno sequence of geneA and within the preceding genener, perturb the synthesis of A-protein and that higher levels of A-protein cause an inhibition ofA activity.  相似文献   

18.
    
Summary We have investigated the fate of different F pro lac episomes carrying a Mu or mini-Mu, after induction of the Mu or mini-Mu prophage, by looking at the frequencies of transfer of the episome and of one chromosomal marker. During the first 10 min after induction the frequency of chromosome mobilization increases while the frequency of episome transfer decreases. This suggests that the F interacts with the chromosome through some kind of Mu mediated process. Later the transfer of both the episome and chromosomal markers is inhibited. Possible reasons for this inhibition are discussed.  相似文献   

19.
Summary A new class of rifamicin-resistant mutants of Escherichia coli was obtained by lysogenic insertions of bacteriophage Mu Amp DNA. Rifamycin resistance is closely linked to the ampicillin resistance conferred by the prophage. Mapping by conjugation with auxotrophic markers revealed that the rifamycin-resistant mutations are located between 28 and 37 min on the E. coli chromosome standard map, some distance from the rpoB gene at 89.5 min. The DNA-dependent RNA polymerase of these mutants is highly sensitive to rifampicin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号