首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nocardia asteroides from various growth phases was treated in vitro with normal rabbit sera, immune rabbit sera containing nocardial polyclonal antibodies and a monoclonal antibody. At intervals, samples were grown in broth or on blood agar plates to determine their viability. Log and stationary phase cells were injected intra-peritoneally into female BALB/c mice and their survival rates in the liver and spleen were determined. Presensitization with antibodies reduced the viability of the log phase cells by 48% and that of the late stationary phase by 4%. The antibody-treated log phase organisms were less viable on the blood agar medium and in the spleen and liver than the control organisms. This indicates that pretreatment with antibody has a lethal effect on N. asteroides and affects its survival in vivo.  相似文献   

2.
Abstract: Intrastriatal injections of the mitochondrial toxins malonate and 3-nitropropionic acid produce selective cell death similar to that seen in transient ischemia and Huntington's disease. The extent of cell death can be attenuated by pharmacological or surgical blockade of cortical glutamatergic input. It is not known, however, if dopamine contributes to toxicity caused by inhibition of mitochondrial function. Exposure of primary striatal cultures to dopamine resulted in dose-dependent death of neurons. Addition of medium supplement containing free radical scavengers and antioxidants decreased neuronal loss. At high concentrations of the amine, cell death was predominantly apoptotic. Methyl malonate was used to inhibit activity of the mitochondrial respiratory chain. Neither methyl malonate (50 µ M ) nor dopamine (2.5 µ M ) caused significant toxicity when added individually to cultures, whereas simultaneous addition of both compounds killed 60% of neurons. Addition of antioxidants and free radical scavengers to the incubation medium prevented this cell death. Dopamine (up to 250 µ M ) did not alter the ATP/ADP ratio after a 6-h incubation. Methyl malonate, at 500 µ M , reduced the ATP/ADP ratio by ∼30% after 6 h; this decrease was not augmented by coincubation with 25 µ M dopamine. Our results suggest that dopamine causes primarily apoptotic death of striatal neurons in culture without damaging cells by an early adverse action on oxidative phosphorylation. However, when combined with minimal inhibition of mitochondrial function, dopamine neurotoxicity is markedly enhanced.  相似文献   

3.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin -/- DJ-1 -/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.  相似文献   

4.
To test the hypothesis that neuroinflammation contributes to dopaminergic neuron death in the MPTP-lesioned mouse, we compared nigrostriatal degeneration in interleukin (IL)-6 (+/+) with IL-6 (-/-) mice. In the absence of IL-6, a single injection of MPTP (30 mg/kg) resulted in significantly greater striatal dopamine depletion than that measured in IL-6 (+/+) mice. The observed dopamine depletion was MPTP dose dependent. This loss of striatal dopamine and a significantly greater loss of TH+ cells in the substantia nigra pars compacta in IL-6 (-/-) mice as compared with control IL-6 (+/+) mice, suggest that IL-6 is neuroprotective in the MPTP-lesioned nigrostriatal system. Co-localization experiments identified striatal astrocytes as the source of IL-6 in IL-6 (+/+) mice at 1 and 7 days postinjection of MPTP. The increased sensitivity of dopaminergic neurons to neurotoxicant in the absence of IL-6, is compatible with a neuroprotective activity of IL-6 in the injured nigrostriatal system.  相似文献   

5.
BALB/c mice injected intravenously with a single, sub-lethal dose of Nocardia asteroides GUH-2 develop several levodopa responsive movement disorders. These included head-shake, stooped posture, bradykinesia, and hesitation to forward movement (6). The changes in monoamine levels in the brain of these mice were determined. There was a significant loss of dopamine with greatly increased dopamine turnover in the neostriatum 7 to 29 days after infection. These effects were specific for dopaminergic neurons since minimal changes were found in neostriatal norepinephrine and serotonin even though serotonin turnover was increased. Changes in monoamine metabolism were not limited to the neostriatum. There were reduced levels of serotonin and norepinephrine with increased serotonin turnover in the cerebellum. One year after infection, dopamine metabolism had returned to near normal levels, but many of the movement disorders persisted. Specific changes in neurochemistry did not always appear to correspond with these impairments. Nevertheless, these data are similar to those reported in MPTP treated BALB/c mice.  相似文献   

6.
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms caused by the loss of dopaminergic (DA) cells and consequently dopamine release in the nigrostriatal system. In vivo and in vitro 6-hydroxydopamine (6-OHDA) PD models are widely used to study the effect of striatal dopamine depletion as well as novel neuroprotective or restorative therapeutic strategies for PD. In the present study, we investigated in vitro the toxicity of 6-OHDA on DA neurons derived from E14 rat ventral mesencephalon (VM) and the neuroprotective efficiency of erythropoietin (Epo) on VM-derived cell cultures against 6-OHDA toxicity. Using E14 VM-derived DA-rich primary cultures, we could demonstrate that 6-OHDA toxicity works in a time-and concentration-dependent way, and leads to cell death not only in DA cells but also in non-DA cells in direct relation to concentration and incubation times. In addition, we found that 6-OHDA toxicity induces caspase-3 activation and an increment of intracellular reactive oxygen species (ROS) in VM-derived cultures. When 6-OHDA-treated VMs were cultured in the presence of the anti-apoptotic protein erythropoietin (Epo), the total neuronal population, including the DA neurons, was protected. However, untreated VM cultures exposed to Epo showed an increase in the total neuronal population, but not an additional increase in DA neuron cell number.These findings suggest that 6-OHDA toxicity is time and concentration-dependent and does not exclusively affect DA neurons. In high concentration and long incubation times, 6-OHDA influences the survival of other neuronal and non-neuronal cell populations derived from the VM cultures. 6-OHDA toxicity induces caspase-3 activation, indicating cell death via the apoptotic pathway which could be restricted or even prevented by pre-exposure to Epo, known to interact via the apoptotic pathway. Our results support and expand on previous findings showing that Epo is an interesting candidate molecule to mediate neuroprotective effects on DA neurons in PD. Furthermore, it could be used in promoting the survival of DA neurons after transplantation in clinical trials.  相似文献   

7.
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons. Adult human endometrial derived stem cells (HEDSC), a readily obtainable type of mesenchymal stem‐like cell, were used to generate dopaminergic cells and for transplantation. Cells expressing CD90, platelet derived growth factor (PDGF)‐Rβ and CD146 but not CD45 or CD31 were differentiated in vitro into dopaminergic neurons that exhibited axon projections, pyramidal cell bodies and dendritic projections that recapitulate synapse formation; these cells also expressed the neural marker nestin and tyrosine hydroxylase, the rate‐limiting enzyme in dopamine synthesis. Whole cell patch clamp recording identified G‐protein coupled inwardly rectifying potassium current 2 channels characteristic of central neurons. A 1‐methyl 4‐phenyl 1,2,3,6‐tetrahydro pyridine induced animal model of PD was used to demonstrate the ability of labelled HEDSC to engraft, migrate to the site of lesion, differentiate in vivo and significantly increase striatal dopamine and dopamine metabolite concentrations. HEDSC are a highly inducible source of allogenic stem cells that rescue dopamine concentrations in an immunocompetent PD mouse model.  相似文献   

8.
The aim of this study was to investigate further the hormone-dependent processes underlying sex differences in neurotoxic responses within the rat nigrostriatal dopaminergic (NSDA) pathway after partial lesioning with 6-OHDA, a state thought to mimic the early stages of Parkinson's disease where, in humans and animal models alike, males appear to be more susceptible. Contrary to our hypotheses, hormone manipulations (gonadectomy +/- oestrogen or androgen treatment) failed to alter survival of tyrosine hydroxylase immunoreactive cells in the substantia nigra pars compacta (SNc) after lesioning; this indicates that, unlike inherent sex differences in toxin-induced striatal dopamine depletion, sex differences in cell loss were not hormonally generated, and that hormone-dependent changes in dopamine depletion can occur independently of cell survival. In addition, hormonally induced changes in striatal expression of the dopamine transporter (DAT), an important factor for 6-OHDA toxicity, did not correlate with hormonal influences on striatal dopamine loss and, in males, central inhibition of aromatase prior to 6-OHDA infusion exacerbated striatal dopamine loss with no effect on SNc tyrosine hydroxylase-immunoreactive survival, suggesting locally generated oestrogen is neuroprotective. These results support the novel view that sex steroid hormones produced peripherally and centrally play a significant, sex-specific role within the sexually dimorphic NSDA pathway to modulate plastic, compensatory responses aimed at restoring striatal dopamine functionality, without affecting cell loss.  相似文献   

9.
10.
Experimental depletion of dopaminergic striatal neurons was induced in mice with the neurotoxin MPTP. To investigate a possible effect of nerve growth factor on the damaged neurons, we injected 4 g into the right cerebral ventricle of mice three days after the last administration of MPTP. We found a significant increase of dopamine and homovanillic acid in the striatum of MPTP treated mice after NGF administration when compared with dopamine and HVA levels in MPTP-treated control mice (p<0.001). The increase of dopamine and homovanillic acid seems to be related to a partial restorative effect of NGF on the damaged dopaminergic cells, since ventricular administration of NGF to normal mice did not increase dopamine or homovanillic acid contents above the levels measured in untreated controls. It appears that administration of nerve growth factor prcduces a beneficial effect on damaged dopaminergic neurons; this effect could be due to stimulation of neuron sprouting from neurons that survived the toxic effect of MPTP. The increase of dopamine levels was seen 8 days after injection of nerve growth factor and was maintained at least until day 25, showing a lasting persistence of the restorative effect.  相似文献   

11.
Most studies of cellulose hydrolysis have been carried out on three components of the cellulolytic systems, viz, endoglucanases, exoglucanases, and cellobiases. Little attention has been paid to the fragmentation activity of certain cellulolytic systems. We have noticed that despite being a more powerful degrader of modified cellulose (CMC), the 7-day grown culture filtrate of Myrothecium verrucaria was less effective than that of Trichoderma reesei at degrading pure unmodified cellulose. Scanning electron microscopy imaging showed that one distinguishing feature of the latter is its ability to fragment (macerate) the cellulose. Cellulose particle size decreased with time as it was incubated in the culture filtrate of T. reesei at 37 °C. This was used as a pre-treatment. Pre-treated cellulose was then washed and incubated with fresh T. reesei or M. verrucaria culture filtrates. Pre-treatment increased liberation of reducing sugars during subsequent incubation of cellulose in T. reesei culture filtrate but not in subsequent incubation in M. verrucaria culture filtrate. It was hypothesized that fragmentation activity of the pre-treatment opened up attack sites for further hydrolysis, but these were not available for attack by other enzyme systems.  相似文献   

12.
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron‐like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule‐associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β‐tubulin III). It also increased expression of brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine‐beta‐hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons.  相似文献   

13.
Saccharomyces cerevisiae was cultured under anaerobiosis in semi-complete medium to which either palmitoleic or oleic acid was added. Cells were grown at 20 °C or 30 °C. The levels of total lipids, total sterols, and phospholipids were higher in cells grown at 20 °C than at 30 °C. The effects of nystatin (NYS), amphotericin B (AMB), and amphotericin B methyl ester (AME) were evaluated by determining cell viability and liberation of intracellular compounds. The loss of cell viability is higher in the first 30 minutes of incubation with the drugs and is the same regardless of the type of cells obtained. Low molecular weight compounds and ions such as K+ are liberated a few minutes after incubation with the drugs whereas proteins and substances absorbing at 260 nm are liberated later. Phosphate liberation comes after K+ and before compounds of higher molecular weights.  相似文献   

14.
Infection sites/green islands were formed in host leaf tissue infected with drops of H. teres. They exhibited higher cytokinin-like activity, sugar and starch than their surrounding tissue and tissue under water drops. The cytokinin-like activity at the infection sites increased from 24 to 72 h of incubation. However, the cytokinin-like activity of the tissue surrounding the infection drops and the tissue under water drops fell from 24 to 72 h incubation. The culture filtrate extracts of the fungus also produced cytokinin-like activity which increased from 1 to 10 days incubation. Application of this culture filtrate extract evoked green island formation. Application of kinetin to host leaves duplicated the green island effect. Thin-layer chromatographic fractions of the tissue extracts and the culture filtrate extracts revealed that a major portion of cytokinin-like activity corresponded to zeatin and zeatin riboside. The presence of zeatin and zeatin riboside (both in tissue and culture filtrate extracts) was confirmed by high performance liquid chromatography. Increases in the amounts of cytokinin-like substances, particularly zeatin and zeatin riboside, attributed to pathogen influence are suggested to be involved in infection and pathogenicity of H. teres.  相似文献   

15.
Opiates, like other addictive drugs, elevate forebrain dopamine levels and are thought to do so mainly by inhibiting GABA neurons near the ventral tegmental area (VTA), in turn leading to a disinhibition of dopamine neurons. However, cholinergic inputs from the laterodorsal (LDT) and pedunculopontine (PPT) tegmental nucleus to the VTA and substantia nigra (SN) importantly contribute, as either LDT or PPT lesions strongly attenuate morphine-induced forebrain dopamine elevations. Pharmacological blockade of muscarinic acetylcholine receptors in the VTA or SN has similar effects. M5 muscarinic receptors are the only muscarinic receptor subtype associated with VTA and SN dopamine neurons. Here we tested the contribution of M5 muscarinic receptors to morphine-induced dopamine elevations by measuring nucleus accumbens dopamine efflux in response to intra-VTA morphine infusion using in vivo chronoamperometry. Intra-VTA morphine increased nucleus accumbens dopamine efflux in urethane-anesthetized wildtype mice starting at 10 min after infusion. These increases were absent in M5 knockout mice and were similarly blocked by pre-treatment with VTA scopolamine in wildtype mice. Furthermore, in wildtype mice electrical stimulation of the PPT evoked an initial, short-lasting increase in striatal dopamine efflux, followed 5 min later by a second prolonged increase in dopamine efflux. In M5 knockout mice, or following systemic pre-treatment with scopolamine in wildtype mice, the prolonged increase in striatal dopamine efflux was absent. The time course of increased accumbal dopamine efflux in wildtype mice following VTA morphine was consistent with both the prolonged M5-mediated excitation of striatal dopamine efflux following PPT electrical stimulation and accumbal dopamine efflux following LDT electrical stimulation. Therefore, M5 receptors appear critical for prolonged PPT excitation of dopamine efflux and for dopamine efflux induced by intra-VTA morphine.  相似文献   

16.
In Parkinson's disease (PD), dopamine depletion alters neuronal activity in the direct and indirect pathways and leads to increased synchrony in the basal ganglia network. However, the origins of these?changes remain elusive. Because GABAergic interneurons regulate activity of projection neurons and?promote neuronal synchrony, we recorded from pairs of striatal fast-spiking (FS) interneurons and direct- or indirect-pathway MSNs after dopamine depletion with 6-OHDA. Synaptic properties of?FS-MSN connections remained similar, yet within 3?days of dopamine depletion, individual FS cells doubled their connectivity to indirect-pathway MSNs, whereas connections to direct-pathway MSNs remained unchanged. A model of the striatal microcircuit revealed that such increases in FS innervation were effective at enhancing synchrony within targeted cell populations. These data suggest that after dopamine depletion, rapid target-specific microcircuit organization in the striatum may lead to increased synchrony of indirect-pathway MSNs that contributes to pathological network oscillations and motor symptoms of PD.  相似文献   

17.
Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin −/− mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin −/− mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin −/− mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin −/− mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin −/− striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.  相似文献   

18.
Dopamine signaling plays a major role in regulation of neuronal apoptosis. During the postnatal period, dopamine signaling is known to be dramatically changed in the striatum. However, because it is difficult to culture neurons after birth, little is known about developmental changes in dopamine-mediated apoptosis. To examine such changes, we established the method of primary culture of striatal neurons from 2- to 3-wk-old (young) mice. Dopamine, via D(1)-like receptors, induced apoptosis in young, but not neonatal, striatal neurons, suggesting that the effect of dopamine on apoptosis changed with development. In contrast, although isoproterenol (Iso), a beta-adrenergic receptor agonist, increased cAMP production to a greater degree than dopamine, Iso did not increase apoptosis in striatal neurons from young and neonatal mice, suggesting a minor role of cAMP in dopamine-mediated apoptosis. Next, we examined the effect of dopamine on Ca(2+) signaling. Dopamine, but not Iso, markedly increased intracellular Ca(2+) in striatal neurons from young mice, and Ca(2+)-chelating agents abolished dopamine-induced apoptosis, suggesting that Ca(2+) played a major role in the dopamine-mediated apoptosis pathway. In contrast, dopamine failed to increase intracellular Ca(2+) in neonatal neurons, and the expression of PLC, which can increase intracellular Ca(2+) via D(1)-like receptor activation, was significantly greater in young than in neonatal striatal neurons. These data suggest that the developmental change in dopamine-mediated Ca(2+) signaling was responsible for differences between young and neonatal striatum in induction of apoptosis. Furthermore, the culture of young striatal neurons is feasible and may provide a new tool for developmental studies.  相似文献   

19.
Ventral mesencephalic neurons contained only low-affinity and sodium-independent binding sites of [3H]WIN 35,428 (marker of dopamine transporter) during the first 10d in primary cultures. These sites were present in cytosol, and they are not very probably related to dopamine transporter. After 12 d in culture, membrane-bound, high-affinity, and sodium-dependent [3H]WIN 35,428 binding sites were detected. In membranes prepared from cells 14 d in culture, cocaine displaced [3H]WIN 35,428 binding with similar potency to that in striatal membranes of adult rat brain. The high-affinity [3H]WIN 35,428 binding sites in mesencephalic neuronal cell cultures are very probably related to dopamine transporter. The development of high-affinity [3H]WIN 35,428 binding sites in neurons cultured for different time periods could be a useful model of dopamine transporter ontogenesis.  相似文献   

20.
We previously reported that macrophage colony-stimulating factor (M-CSF, CSF-1) played important roles in the process of the repopulation of Kupffer cells after their elimination by administration of liposome-entrapped dichloromethylene diphosphonate (lipo-MDP). In this study, we examined the repopulation of Kupffer cells and splenic red pulp macrophages in osteopetrotic (op/op) mice defective in the production of functional M-CSF and their littermate mice by using the lipo-MDP model. In untreated op/op mice, numbers of F4/80-positive Kupffer cells in the liver and F4/80-positive splenic red pulp macrophages were reduced. Repopulation of Kupffer cells and splenic macrophages was observed in littermate (op/+) mice liver by 14 days after depletion. However, in op/op mice, repopulation of Kupffer cells was not observed in Kupffer-cell-depleted op/op mice until 56 days after depletion, whereas splenic red pulp macrophages repopulated and recovered to the level of control op/op mice by 10 days after depletion. Single injection of M-CSF was effective for the induction of the repopulation of Kupffer cells, and daily administration of M-CSF induced remarkable repopulation and maturation of Kupffer cells and proliferation of macrophage precursor cells in the liver of Kupffer-cell-depleted op/op mice. These results suggest that Kupffer cells are completely M-CSF-dependent tissue macrophages, whereas splenic red pulp macrophages are composed of M-CSF-dependent macrophages and M-CSF-independent macrophages. This mouse model provides a useful tool for the study of effects of growth factor on Kupffer cell differentiation in vivo. This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan, NIH grant CA20408, and a Tsukada Memorial Grant (2000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号