首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

2.
The effect of body temperature on the locomotory energetics of lizards   总被引:1,自引:0,他引:1  
Oxygen consumption (VO2), carbon dioxide production (VCO2), and stamina were measured in the lizard Tupinambis nigropunctatus running at sustainable and non-sustainable velocities (v) on a motor-driven treadmill. Three experimental groups were measured: field-fresh animals at body temperature (Tb) = 35 degrees C and laboratory-maintained animals at Tb = 35 and 25 degrees C. Mean preferred Tb was determined to be 35.2 degrees C. At 35 degrees C, field-fresh animals had a greater maximal oxygen consumption (VO2max corr) (4.22 vs 3.60 ml O2 g-0.76h-1) and a greater endurance. The net cost of transport (slope of VO2 on v) did not differ between the groups (= 2.60 ml O2 g-0.76)km-1). Velocity at which VO2max is attained (MAS) is 0.84 km h-1. The respiratory exchange ratio (R) exceeded 1.0 at v above MAS, indicating supplementary anaerobic metabolism. At 25 degrees C, VO2max corr was lower (2.34 ml O2 g-0.76h-1) as was endurance, MAS occurring at 0.5 km h-1. Net cost of transport was not significantly different than at 35 degrees C. The effect of Tb on locomotory costs was analyzed for this lizard and other species. It was concluded that the net cost of transport is temperature independent in all species examined and the total cost of locomotion (VO2 v-1) is temperature dependent in Tupinambis (Q10 = 1.4-2.0) and all other species examined except one. The energetic cost of locomotion [(VO2active-VO2rest)v-1], previously reported to be temperature independent in lizards, is temperature dependent in Tupinambis (Q10 = 1.3-1.6) and in two other species.2r  相似文献   

3.
Six slow loris were exposed to air temperatures between 10 degrees C and 40 degrees C. Rectal temperature was stable (mean, 34.8 degrees C) at air temperatures between 17 degrees C and 31 degrees C; at higher air temperatures, the animals became hyperthermic. Oxygen consumption was minimal at air temperatures of 31.4-36.6 degrees C; the mean value (0.250 ml O2 g-1 h-1) was only 36% of the expected level for a eutherian Mammal. The slow loris increased its heat production at lower air temperatures. Thermal polypnea occurred in response to heat, and some of the animals were able to dissipate their entire metabolic heat production at lower air temperatures. Thermal polypnea occurred in response to heat, and some of the animals were able the combined thermal conductance of the tissues and haircoat was 73% of the predicted values. It was concluded that, in spite of its low metabolic rate, the slow loris had effective responses to moderate cold, and that, in addition, it was well adapted to a hot climate.  相似文献   

4.
Metabolic and body temperature (Tb) responses of star-nosed moles (Condylura cristata) exposed to air temperatures ranging from 0 to 33 degrees C were investigated. The thermoneutral zone of this semi-aquatic mole extended from 24.5 to 33 degrees C, over which its basal rate of metabolism averaged 2.25 ml O2 g-1 h-1 (45.16 J g-1 h-1). This rate of metabolism is higher than predicted for terrestrial forms, and substantially higher than for other moles examined to date. Minimum thermal conductance was nearly identical to that predicted for similar-sized eutherians and may represent a compromise between the need to dissipate heat while digging and foraging in subterranean burrows, and the need to conserve heat and avoid hypothermia during exposure to cold. C. cristata precisely regulated Tb (mean +/- SE = 37.7 +/- 0.05 degrees C) over the entire range of test temperatures. Over three separate 24-h periods, Tb of a radio-implanted mole varied from 36.6 to 38.8 degrees C, and generally tracked level of activity. No obvious circadian variation in Tb and activity was apparent, although cyclic 2-4 h intervals of activity punctuated by periods of inactivity lasting 3-5 h were routinely observed. We suggest that the elevated basal metabolic rate and relatively high Tb of star-nosed moles may reflect the semi-aquatic habits of this unique talpid.  相似文献   

5.
The present study was undertaken to investigate energy balance in professional male breath-hold divers in Tsushima Island, Japan. In 4 divers, rectal (Tre) and mean skin (Tsk) temperatures and rate of O2 consumption (VO2) were measured during diving work in summer (27 degrees C water) and winter (14 degrees C water). Thermal insulation and energy costs of diving work were estimated. In summer, comparisons were made of subjects clad either in wet suits (protected) or in swimming trunks (unprotected), and in winter, they wore wet suits. The average Tre in unprotected divers decreased to 36.4 +/- 0.2 degrees C at the end of 1-h diving work, but in protected divers it decreased to 37.2 +/- 0.3 degrees C in 2 h in summer and to 36.9 +/- 0.1 degree C in 1.5 h in winter. The average Tsk of unprotected divers decreased to 28.0 +/- 0.6 degrees C in summer and that of protected divers decreased to 32.9 +/- 0.5 degrees C in summer and 28.0 +/- 0.3 degrees C in winter. Average VO2 increased 190% (from 370 ml/min before diving to 1,070 ml/min) in unprotected divers in summer, but in protected divers it rose 120% (from 360 to 780 ml/min) in summer and 110% (from 330 to 690 ml/min) in winter. Overall thermal insulation (tissue and wet suit) calculated for protected divers was 0.065 +/- 0.006 degree C X kcal-1 X m-2 X h-1 in summer and 0.135 +/- 0.019 degree C X kcal-1 X m-2 X h-1 in winter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Exercise training reduces the muscle insulin resistance of the obese Zucker rat. The purpose of the present study was to determine whether the magnitude of this training response is exercise intensity specific. Obese Zucker rats were randomly divided into sedentary (SED), low-intensity (LI), and high-intensity (HI) exercise groups. For the LI rats, exercise training consisted of running on a rodent treadmill at 18 m/min up an 8% grade for 90 min. Rats in the HI group ran at 24 m/min up an 8% grade for four 17-min bouts with 3 min between bouts. Both exercise groups performed the same amount of work and trained 5 days/wk for 7 wk. To evaluate muscle insulin resistance, rat hindlimbs were perfused for 30 min with perfusate containing 6 mM glucose (0.15 mu Ci of D-[14C(U)] glucose/ml) and either a maximal (10.0 mU/ml) or a submaximal (0.50 mU/ml) insulin concentration. Perfusions were performed 48-56 h after the last exercise bout and a 12-h fast. In the presence of 0.5 mU/ml insulin, the rate of muscle glucose uptake was found to be significantly faster for the HI (9.56 +/- 0.66 mumol.h-1.g-1) than for the LI (7.72 +/- 0.65 mumol.h-1.g-1) and SED (6.64 +/- 0.44 mumol.h-1.g-1) rats. The difference in glucose uptake between the LI and SED rats was not significant. In the presence of 10.0 mU/ml insulin, the rate of glucose uptake was significantly faster for the HI (16.43 +/- 1.02 mumol.h-1.g-1) than for the LI rats (13.76 +/- 0.84 mumol.h-1.g-1) and significantly faster for the LI than for the SED rats (11.02 +/- 0.35 mumol.h-1.g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. Thermoregulation, metabolism and minimum conductance in Africa's largest cricetid, Cricetomys gambianus (1870.9 +/- 194.2 g), were investigated. 2. A mean minimal resting metabolic rate of 0.61 +/- 0.09 ml O2/g/hr (139% of that predicted), a minimal conductance of 0.04 +/- 0.01 ml O2/g/degrees C/hr (195% of that predicted), a thermoneutral zone from 21 to 34 degrees C and a mean body temperature of 35.6 +/- 1.1 degree C below an ambient temperature of 20 degrees C were found. 3. It was concluded that giant rats are physiologically adapted to burrowing habits, but only within cool environments, and are precluded from exploiting drier areas.  相似文献   

9.
盐度与体重对台湾罗非鱼耗氧率的影响   总被引:12,自引:1,他引:11  
在盐度为淡水、7、14、2 1、2 8和 35的条件下 ,测定了 3个体重组 (1.5 7~ 4.87g ,7.0 7~ 18.2 3g和31.5 0~ 5 2 .41g)的台湾红罗非鱼的耗氧率 ,方差分析表明 ,盐度对台湾红罗非鱼的耗氧率有极显著的影响(P <0 .0 1) .体重范围为 1.5 7~ 18.2 4g时 ,盐度 7实验组的耗氧率最高 ,分别为 0 .41mgO2 ·g-1·h-1(1.5 7~ 4.78g)和 0 .34mgO2 ·g-1·h-1(7.0 7~ 18.2 3g) ,体重范围为 31.5 0~ 5 2 .41g时 ,耗氧率最高值出现在盐度 35组 ,为 0 .30mgO2 ·g-1·h-1.耗氧率最低值也因体重范围的不同而出现在不同的盐度 ,体重范围为1.5 7~ 4.78g时 ,盐度 14组的耗氧率最低 ,为 0 .2 8mgO2 ·g-1·h-1,体重范围在 7.0 7~ 5 2 .41g时 ,耗氧率的最低值均出现在盐度 2 1组 ,其中体重范围 7.0 7~ 18.2 3g的最低值为 0 .2 2mgO2 ·g-1·h ,而体重范围31 5 0~ 5 2 .41g的最低耗氧率为 0 .13mgO2 ·g-1·h-1.协方差分析表明 ,盐度和体重对台湾红罗非鱼的耗氧率存在极显著的交互作用 (P <0 .0 1) .  相似文献   

10.
Effect of pentoxiphylline on oxygen transport during hypothermia   总被引:2,自引:0,他引:2  
At least two investigators have demonstrated a reduction in O2 extraction during induced hypothermia (Cain and Bradley, J. Appl. Physiol. 55: 1713-1717, 1983; Schumacker et al., J. Appl. Physiol. 63: 1246-1252, 1987). We hypothesized that administration of pentoxiphylline (PTX), a theobromine that lowers blood viscosity and has vasodilator effects, would increase O2 extraction during hypothermia. To test this hypothesis, we studied O2 transport in anesthetized, paralyzed, mechanically ventilated beagles exposed to hypoxic hypoxia during either 1) normothermia (38 degrees C), 2) hypothermia (30 degrees C), or 3) hypothermia + PTX (30 degrees C and PTX, 20 mg.kg-1.h-1). Measurements included arterial and mixed venous PO2, hemoglobin concentration and saturation, cardiac output, systemic vascular resistance (SVR), blood viscosity, and O2 consumption (VO2). Critical levels of O2 delivery (DO2, the product of arterial O2 content and cardiac output) were determined by a system of linear regression. Hypothermia significantly decreased base line cardiac output (-35%), DO2 (-37%), and VO2 (-45%), while increasing SVR and blood viscosity. Addition of PTX increased cardiac output (35%) and VO2 (14%), and returned SVR and blood viscosity to normothermic levels. Hypothermia alone failed to significantly reduce the critical level of DO2, but addition of PTX did [normothermia, 11.4 +/- 4.2 (SD) ml.kg-1.min-1; hypothermia, 9.3 +/- 3.6; hypothermia + PTX, 6.6 +/- 1.3; P less than 0.05, analysis of variance]. The O2 extraction ratio (VO2/DO2) at the critical level of DO2 was decreased during hypothermia alone (normothermia, 0.60 +/- 0.13; hypothermia, 0.42 +/- 0.16; hypothermia + PTX, 0.62 +/- 0.19; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
环境因子对细基江蓠繁枝变种氮、磷吸收速率的影响   总被引:17,自引:0,他引:17  
实验室条件下,研究了光强、酸碱度、温度、盐度对细基江蓠繁枝变种N、P吸收速率的影响.细基江蓠繁枝变种对N的吸收速率在光强为800~2400μmolphoton  相似文献   

12.
To assess effects of anesthesia and opioids, we studied 13 children with obstructive sleep apnea (OSA, age 4.0 +/- 2.2 yr, mean +/- SD) and 24 age-matched control subjects (5.8 +/- 4.0 yr). Apnea indexes of children with OSA were 29.4 +/- 18 h-1, median 30 h-1. Under inhalational anesthetic, closing pressure at the mask was 2.2 +/- 6.9 vs. -14.7 +/- 7.8 cmH2O, OSA vs. control (P < 0.001). After intubation, spontaneous ventilation was 115.5 +/- 56.9 vs. 158.7 +/- 81.6 ml x kg-1 small middle dot min-1, OSA vs. control (P = 0.02), despite elevated PCO2 (49.3 vs. 42.1 Torr, OSA vs. control, P < 0.001). Minute ventilation fell after fentanyl (0.5 microg/kg iv), with central apnea in 6 of 13 OSA cases vs. 1 of 23 control subjects (P < 0.001). Consistent with the finding of reduced spontaneous ventilation, apnea was most likely when end-tidal CO2 exceeded 50 Torr during spontaneous breathing under anesthetic. Thus children with OSA had depressed spontaneous ventilation under anesthesia, and opioids precipitated apnea in almost 50% of children with OSA who were intubated but breathing spontaneously under inhalational anesthesia.  相似文献   

13.
Body temperature and metabolic rate were recorded continuously in two groups of marmots either exposed to seasonally decreasing ambient temperature (15 to 0 degrees C) over the entire hibernation season or to short-duration temperature changes during midwinter. Hibernation bouts were characterized by an initial 95% reduction of metabolic rate facilitating the drop in body temperature and by rhythmic fluctuations during continued hibernation. During midwinter, we observed a constant minimal metabolic rate of 13.6 ml O(2) x kg(-1) x h(-1) between 5 and 15 degrees C ambient temperature, although body temperature increased from 7.8 to 17.6 degrees C, and a proportional increase of metabolic rate below 5 degrees C ambient temperature. This apparent lack of a Q(10) effect shows that energy expenditure is actively downregulated and controlled at a minimum level despite changes in body temperature. However, thermal conductance stayed minimal (7.65 +/- 1.95 ml O(2) x kg(-1) x h(-1) x degrees C(-1)) at all temperatures, thus slowing down cooling velocity when entering hibernation. Basal metabolic rate of summer-active marmots was double that of winter-fasting marmots (370 vs. 190 ml O(2) x kg(-1) x h(-1)). In summary, we provide strong evidence that hibernation is not only a voluntary but a well-regulated strategy to counter food shortage and increased energy demands during winter.  相似文献   

14.
Hepatic O2 consumption (VO2) remains relatively constant (O2 supply independent) as O2 delivery (DO2) progressively decreases, until a critical DO2 (DO2c) is reached below which hepatic VO2 also decreases (O2 supply dependence). Whether this decrease in VO2 represents an adaptive reduction in O2 demand or a manifestation of tissue dysoxia, i.e., O2 supply that is inadequate to support O2 demand, is unknown. We tested the hypothesis that the decrease in hepatic VO2 during O2 supply dependence represents dysoxia by evaluating hepatic mitochondrial NAD redox state during O2 supply independence and dependence induced by progressive hemorrhage in six pentobarbital-anesthetized dogs. Hepatic mitochondrial NAD redox state was estimated by measuring hepatic venous beta-hydroxybutyrate-to-acetoacetate ratio (beta OHB/AcAc). The value of DO2c was 5.02 +/- 1.64 (SD) ml.100 g-1.min-1. The beta-hydroxybutyrate-to-acetoacetate ratio was constant until a DO2 value (3.03 +/- 1.08 ml.100 g-1.min-1) was reached (P = 0.05 vs. DO2c) and then increased linearly. Peak liver lactate extraction ratio was 15.2 +/- 14.1%, occurring at a DO2 of 5.48 +/- 2.54 ml.100 g-1.min-1 (P = NS vs. DO2c). Our data support the hypothesis that the decrease in VO2 during O2 supply dependence represents tissue dysoxia.  相似文献   

15.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
During NA-induced NST blood flow through BAT increased from 0.18 ml min-1 to 3.21 ml min-1 in 23 degrees C acclimated (equals thermoneutrality) and from 0.61 ml min-1 to 9.67 ml min-1 in outdoors (-2 to 12 degrees C Ta) acclimated Djungarian hamsters. In 23 degrees C acclimated hamsters this increase was accomplished by a diversion of blood flow from visceral organs without a change in cardiac output (19.7 versus 20.5 ml min-1 before and after NA). In outdoors acclimated hamsters we also observed a redistribution of blood flow from the viscera to BAT. In addition, cardiac output increased from 24.3 to 38.8 ml min-1. Metabolic rate of BAT in situ was determined from organ blood flow and the (A-V)O2 of blood across the interscapular BAT. BAT of outdoor acclimated hamsters showed a significantly higher metabolism in comparison to 23 degrees C acclimated hamsters (81.1 versus 30.4 mlO2h-1). Furthermore, this calculation revealed that 28% (23 degrees C acclimated hamsters) and 61% (outdoors acclimated hamsters) of total NST were located in BAT of Phodopus sungorus.  相似文献   

17.
This study was designed to examine insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats after conditions of simulated microgravity. To simulate microgravity, male Sprague-Dawley rats were suspended in a head-down (45 degrees) position with their hindlimbs non-weight bearing (SUS) for 14 days. In addition, rats were assigned to suspension followed by exercise (SUS-E), to cage control (CC), or to exercising control (CC-E) groups. Exercise consisted of five 10-min bouts of treadmill running at the same relative intensity for the CC-E and SUS-E rats (80-90% of maximum O2 consumption). Hindlimb perfusion results indicated that glucose uptake for the entire hindquarter at 24,000 microU/ml insulin (maximum stimulation) was significantly higher in the SUS (8.9 +/- 0.5 mumol.g-1.h-1) than in the CC (7.6 +/- 0.4 mumol.g-1.h-1) rats, signifying an increased insulin responsiveness. Glucose uptake at 90 microU/ml insulin was also significantly higher in the SUS (48 +/- 4; % of maximum stimulation over basal) than in the CC (21 +/- 4%) rats. In addition, exercise-induced increases in glucose uptake for the hindlimbs (133%) and glucose incorporation into glycogen for the plantaris (8.4-fold), extensor digitorum longus (5.4-fold), and white gastrocnemius (4.8-fold) muscles were greater for the SUS-E rats than for the CC-E rats (39% and 1.9-, 1.9-, and 3.0-fold, respectively). Therefore, suspension of the rat with hindlimbs non-weight bearing leads to enhanced muscle responses to insulin and exercise when they were applied separately. However, insulin action appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.  相似文献   

18.
The aim of the study was to evaluate the effect of selected temperatures on viability (apoptosis and necrosis) of bovine blood neutrophil granulocytes (neutrophils) in vitro. The following temperatures were tested: -80, -20, 4, 23, 37 degrees C. Heparinised bovine blood was incubated for 1, 4 and 24 h under respective temperature. Apoptosis and necrosis of neutrophils were detected by light microscopy, transmission electron microscopy (TEM) and flow cytometry (FCM). From selected temperatures, 4 degrees C impaired the neutrophil viability least. The proportion of apoptotic and necrotic neutrophils amounted to (mean +/- SD) 5.25 +/- 3.53% and 0.83 +/- 0.38%; 7.09 +/- 2.07% and 1.64 +/- 0.50%; 35.39 +/- 12.53% and 5.46 +/- 1.46%; after 1, 4 and 24 h incubation, respectively. The temperature (4 degrees C) is the best alternative for short-term storage.  相似文献   

19.
栉孔扇贝耗氧率和排氨率的研究   总被引:36,自引:0,他引:36  
1999年 4~ 6月 ,采用室内实验生态学方法对栉孔扇贝的耗氧率和排氨率进行了研究 .结果表明 ,在适宜的温度范围内 ,栉孔扇贝的耗氧率和排氨率均与温度成正比 ,而与体重呈负相关关系 .在实验室温度 (8~ 2 8℃ )条件下 ,栉孔扇贝的耗氧率为 0 .48~ 9.0 9mg·g-1·h-1,排氨率为 0 .0 5~ 1 0 1mg·g-1·h-1.其中耗氧率在 2 3℃时达到最高值 ,2 8℃时开始下降 ,而排氨率则呈持续升高趋势 .栉孔扇贝的日常代谢明显高于标准代谢 ,耗氧率和排氨率平均值分别提高约 35 .8%和 75 .9% .  相似文献   

20.
The H2 clearance technique was used to determine the blood flow of the postulated respiratory chemosensitive areas near the ventrolateral surface of the medulla. In 12 pentobarbital sodium-anesthetized cats, flow (mean +/- SD) was measured from 25-micron Teflon-coated platinum wire electrodes implanted to a depth of 0.3-0.7 mm. Flow (in ml X min-1 X 100 g-1, n = 35) was 52.8 +/- 28.5 in hypocapnia [arterial CO2 partial pressure (PaCO2) = 21.8 +/- 1.6 Torr], 57.8 +/- 27.5 in normocapnia (PaCO2 = 31.9 +/- 2.2 Torr), and 75.0 +/- 31.7 in hypercapnia (PaCO2 = 44.5 +/- 3.0 Torr). Flow determined from 15 electrodes in adjacent pyramidal tracts (white matter) was less at all levels of CO2; 22.9 +/- 12.3 in hypocapnia, 29.1 +/- 15.9 in normocapnia, and 33.9 +/- 13.9 in hypercapnia. In hypoxia [arterial O2 partial pressure (PaO2) = 39.9 +/- 6.3 Torr] ventrolateral surface flow rose to 87.9 +/- 47.6, and adjacent white matter flow was 35.8 +/- 15.6. These results indicate that flow in the postulated central chemoreceptor areas exceeds that of white matter and is sensitive to variations in PaCO2 and PaO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号