首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims Alpine tree line ecotones are harsh environments where low temperatures constrain tree regeneration and growth. However, the expected upward shift of tree line ecotones in response to climate warming has not been ubiquitous. The lack of coupling between tree line dynamics and climate warming might be explained by factors other than climate variation that determine seedling recruitment in these ecotones. We want to assess how the availability of suitable habitat for establishment and the effects of facilitation on seedling survival and growth affect tree recruitment within tree line ecotones and modulate their responses to climate. Location We evaluate the relevance of these factors for Pinus uncinata tree line ecotones in the Catalan Pyrenees (north‐east Spain) and Andorra. Methods We analysed the microhabitat of naturally established seedlings in rectangular plots at the tree line ecotone, assessing the habitat type and the proximity to potentially protective elements that may improve microsite conditions. We tested whether krummholz individuals influence regeneration at the tree line by performing a transplantation field experiment to evaluate the extent of facilitation on seedling survival and growth in height. A total of 820 seedlings were transplanted at different distances and orientations (resulting in 12 positions) from krummholz mats and monitored over 2 years. Results Safe sites for P. uncinata recruits consisted of sparse vegetation covering bare soil, gravel or litter, and close to protective elements that may ameliorate microsite conditions. The field experiment showed that directional positive interactions enhance seedling survival and growth, altering the spatial patterns of recruit survivorship, especially during harsh winter conditions (shallow and irregular snowpack). Main conclusions Our results suggest that scarce availability of safe sites and uneven facilitation by krummholz control seedling recruitment patterns within alpine tree line ecotones. Such constraints may distort or counter the response of tree line ecotones to climate warming at local and regional scales.  相似文献   

2.
Aims: The upper elevation limit of forest vegetation in mountain ranges (the alpine treeline ecotone) is expected to be highly sensitive to global change. Treeline shifts and/or ecotone afforestation could cause fragmentation and loss of alpine habitat, and are expected to trigger considerable alterations in alpine vegetation. We performed an analysis of vegetation structure at the treeline ecotone to evaluate whether distribution of the tree population determines the spatial pattern of vegetation (species composition and diversity) across the transition from subalpine forest to alpine vegetation. Location: Iberian eastern range of the Pyrenees. Methods: We studied 12 alpine Pinus uncinata treeline ecotones. Rectangular plots ranging from 940 to 1900 m2 were placed along the forest‐alpine vegetation transition, from closed forest to the treeless alpine area. To determine community structure and species distribution in the treeline ecotone, species variation along the forest‐alpine vegetation transition was sampled using relevés of 0.5 m2 set every 2 m along the length of each plot. Fuzzy C‐means clustering was performed to assess the transitional status of the relevés in terms of species composition. The relation of P. uncinata canopy cover to spatial pattern of vegetation was evaluated using continuous wavelet transform analysis. Results: Vegetation analyses revealed a large degree of uniformity of the subalpine forest between all treeline ecotone areas studied. In contrast, the vegetation mosaic found upslope displayed great variation between sites and was characterized by abrupt changes in plant community across the treeline ecotone. Plant richness and diversity significantly increased across the ecotone, but tree cover and diversity boundaries were not spatially coincident. Conclusions: Our results revealed that no intermediate communities, in terms of species composition, are present in the treeline ecotone. Ecotone vegetation reflected both bedrock type and fine‐scale heterogeneity at ground level, thereby reinforcing the importance of microenvironmental conditions for alpine community composition. Tree cover did not appear to be the principal driver of alpine community changes across the treeline ecotone. Microenvironmental heterogeneity, together with effects of past climatic and land‐use changes on ecotone vegetation, may weaken the expected correlation between species distribution and vegetation structure.  相似文献   

3.
Aims The present paper concerns the analysis of macro‐remains (plant imprints) from high altitude travertine deposits dating back to the early Holocene (9800 BP ). Our results allow us to discuss treeline location and ecology, and to supplement previous data based on pollen from natural sediments and charcoal from natural soil. Location The travertine under study is located in the Queyras massif, in the southern French Alps, along the Italian border. The site is situated on a south‐facing slope. Methods The travertine deposit has been dated by 230Th/234U. Taxonomic identification of plant imprints was achieved by comparison of the morphology of fossil specimens with extant material. Results Imprints of Pinus uncinata (cones and needles), broad‐leaved trees (Betula cf. pubescens, Populus tremula and Salix spp.), and unidentified trunks have been found. The plant assemblage records the existence at a high altitude (2200 m) of shade‐intolerant vegetation at around 9800 BP. Our data indicate that the treeline limit was at least 100 m higher than previously thought. The morphological features of the travertine, the plant assemblage and trunk diameters indicate that during the travertinization process, vegetation around the site was probably dense with tall upright trees. Main conclusions Our data show that Pinus uncinata and broad‐leaved trees developed at 2200 m, while regional pollen analyses locate the treeline at lower altitudes. Different research methods appear to provide different results. Around 9800 BP tree regeneration and growth were made possible up to at least 2200 m a.s.l., probably as a result of warmer and wetter summers. Warmer conditions are inferred from the predicted increase in incoming solar radiation based on calculated orbital variations, and wetter conditions are inferred from the build‐up of the travertine.  相似文献   

4.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1,950 m a.s.l.), treeline (2,110 m a.s.l.) and within the krummholz belt (2,180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5°C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006–2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e., year-to-year) variability in timing and dynamic of wood formation of P. cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.  相似文献   

5.
Abstract. In this field study we analysed the regional and local scale effects of disturbance and climate on altitudinal treelines dominated by Nothofagus pumilio in northern Patagonia. We compared two regions west and east of the Andes at 40° S, slopes with warm vs cool aspects and undisturbed vs locally disturbed treelines. This spatial framework allowed us to test (1) for differences among treelines affected by different types of local disturbance and (2) the traditional hypothesis that low temperature limits treeline. Contingency tables and ANOVA showed that local disturbance occurred more frequently than expected on slopes with cool aspects, steep slope angles and concave slope configuration. Disturbed treelines were locally lowered with longer ecotones and lower krummholz growth rates and vegetation cover than undisturbed treelines. Three‐way ANOVA showed the significant influences of study area (regional climate) and aspect (local climate) on treeline elevation, krummholz growth rates and density, tree density and vegetation cover, while accounting for local disturbance. Treeline elevations were higher east of the Andes reflecting the more continental climate in Argentina than in Chile, plus regional impacts of volcanic eruptions. Tree density and vegetation cover were greater west of the Andes reflecting greater precipitation in Chile. Within study areas, local climate had different influences on treeline elevations and krummholz growth rates west and east of the Andes. We predict that increased tree growth and upslope advance of treeline in response to global warming is more likely in Chile than in Argentina near 40° S, unless precipitation increases east of the Andes. To test these predictions, we recommend research be stratified to account for the influences of local disturbance, which may confound climatic impacts. In northern Patagonia, suitable control (undisturbed) study sites will most likely be found at upper slope positions with low slope angles, simple microtopography and straight topographic configuration.  相似文献   

6.
Background: Recent work has shown little change in the position of the Smith fir treeline on the south-eastern Tibetan Plateau in response to global warming. However, the relationship between tree distribution patterns within the treeline ecotone and low responsiveness is unknown, and additional constraints than climate might be major drivers of these patterns (e.g. microsite availability for regeneration).

Aims: To characterise the spatial patterns of Smith fir alpine treelines and to infer the underlying processes driving their dynamics.

Methods: We investigated spatial patterns of Smith fir trees across two treeline ecotones in the Sygera Mountains, south-eastern Tibetan Plateau. The O(r)-ring statistic was used to analyse the univariate and bivariate spatial point patterns of three size classes (adults, juveniles and seedlings).

Results: Mature trees presented random spatial patterns. Clusters of juveniles and seedlings colonised areas not occupied by mature trees. Seedlings were clustered and established preferentially near juvenile firs, Rhododendron mats and over moss–lichen and organic matter substrates, indicating the importance of microsite availability for successful Smith fir recruitment.

Conclusions: Local factors such as microsite availability may play a major role in driving recent Smith fir treeline patterns and determine the lack of significant warming-induced upward shifts of these ecotones.  相似文献   

7.
Alpine treelines are expected to move upslope with a warming climate. However, so far treelines have responded inconsistently and future shifts remain difficult to predict since many factors unrelated to temperature, such as biotic interactions, affect responses at the local scale. Especially during the earliest regeneration stages, trees can be strongly influenced by alpine vegetation via both competition and facilitation. We aimed to understand the relative importance of these two types of interaction in different vegetation structures for treeline regeneration dynamics. Effects of herbaceous alpine vegetation on seedling emergence and first‐year performance were studied in a field experiment in the French Alps (2100 m a.s.l.) with five important European treeline tree species: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. Total emergence and locally‐germinated seedling survival were not affected, but for seedlings planted at two months of age, negative vegetation impacts dominated for all response parameters: first‐year survival, growth and carbohydrate accumulation. However, in the winter half‐year, evergreen tree seedlings increased carbohydrate reserves under the protection of senescent herbs. Also, responses of locally‐germinated seedlings suggest facilitative vegetation effects in the first two months after emergence. Thus, the interaction switched between competition and facilitation according to ontogenetic stage and seasons. Still, the net outcome after one year was negative, but species differed in their susceptibilities. Because initial establishment is the first bottleneck determining whether treelines remain stable or move upslope, understanding establishment, including site‐, life‐stage and species‐specific processes, is essential for understanding observed treeline spatial patterns and dynamics. When developing predictive models of treeline dynamics, all these ‘local’ aspects should be incorporated in addition to more global drivers like changes in temperature.  相似文献   

8.
Temperate and boreal forests are forecast to change in composition and shift spatially in response to climate change. Local‐scale expansions and contractions are most likely observable near species range limits, and as trees are long‐lived, initial shifts are likely to be detected in the understory regeneration layers. We examined understory relative abundance patterns of naturally regenerated temperate and boreal tree species in two size classes, seedlings and saplings, and across two spatial scales, local stand‐scale ecotones (tens of meters) and the regional temperate–boreal transition zone (?250 km) in central North America, to explore indications of climate‐mediated shifts in regeneration performance. We also tested for the presence of strong environmental gradients across local ecotones that might inhibit species expansion. Results showed that tree regeneration patterns across ecotones varied by species and size class, and varied across the regional summer temperature gradient. Temperate tree species regeneration has established across local ecotones into boreal forest patches and this process was facilitated by warmer temperatures. Conversely, boreal conifer regeneration exhibited negative responses to the regional temperature gradient and only displayed high abundance at the boreal end of local ecotones at cool northern sites. The filtering effects of temperature also increased with individual size for both boreal and temperate understory stems. Observed regeneration patterns and the minor environmental gradients measured across local ecotones failed to support the idea that there were strong barriers to potential temperate tree expansion into boreal forest patches. Detectable responses, consistently in the directions predicted for both temperate and boreal species, indicate that summer temperature is likely an important driver of natural tree regeneration in forests across the temperate–boreal transition zone. Regeneration patterns point toward temperate expansion and reduced but continued boreal presence in the near‐future, resulting in local and regional expansions of mixed temperate‐boreal forests.  相似文献   

9.
Tree regeneration has traditionally been used as a measure of the response of treeline to climate Changes in growth form of krummholz trees may also indicate whether treeline is responding to changes in climate The purpose of this study was to determine whether krummholz trees m the forest-tundra ecotone of Rocky Mountain National Park, Colorado have experienced significant vertical stem growth, in the absence of mortality, and if this growth occurred in response to recent changes in climate We sampled and dated Engelmann spruce and subalpine fir krummholz leaders stratified by height class at three sampling locations to determine the dates leaders initiated growth above mean snow depth At one sampling location, 215 additional leaders were sampled to construct an age structure of leader release dates Dates of leader release taken from the age structure were compared with seasonal temperatures, seasonal precipitation, winter snow depths, and annual runoff using t-tests Dates of leader release were also compared to proxy climate records for the southern Rocky Mountain region Based on historical photos as well as the data presented here, both spruce and fir krummholz trees experienced significant height growth as early as the 1850's and continued to grow vertically, at least through the 1970's This vertical stem growth occurred in the absence of significant mortality Running mean annual temperature and May snow depth are both positively associated with years of leader release, suggesting that a warmer, wetter climate, possibly following the end of the Little Ice Age ca 1850, may have induced these changes in the ecotone  相似文献   

10.
The tree species composition, vertical stratification and patterns of spatial autocorrelation at the tree and quadrate (25 × 25 m) scales were studied in a natural mature PinuS sylvestris dominated forest in eastern Finland. For the analyses we mapped the locations and dimensions of trees taller than 10 m in a 9 ha (300 × 300 m) area, and within this area we mapped all trees taller than 0.3 m on a core plot of 4 ha (200 × 200 m). The overall tree size distribution was bimodal. the dominant layer and the understory forming the peak frequencies. Pinus sylvestris dominated the main canopy, together with scattered Betula pendula and Picea abies. Alnus incana, Populus tremula, Salix caprea, Sorbus aucuparia and Juniperus communis occurred only in the under- and middlestories. Autocorrelation analysis (semivarianee) of tree size variation revealed spatial patterns, which were strongly dependent on the size of trees included in the analysis. When all living trees, including the understory regeneration, were taken into account, the autocorrelation pattern ranged up to 35 m inter-tree distances, reflecting the spatial scale of understory regeneration patches. Competitive interaction among middle- and upperstory trees (height>10 m) had contrasting effects on autocorrelation pattern depending on spatial scale. At the fine scale, dominant trees suppressed their smaller close neighbors (asymmetric competition), which was shown as increased tree size variation at small inter-tree distances (<2 m). At slightly larger inter-tree distances, specifically among large trees of similar size, competition was more symmetrical, which resulted in decreased tree size variation at these inter-tree distances (3–4 m). This effect was seen most clearly in the dominant trees, there being a clear autocorrelation pattern in tree size up to inter-tree distances of ~4 m. At the quadrate scale (25 × 25 m) the analysis revealed high local variation in structural characteristics such as tree height diversity (THD), tree species diversity (H) and autocorrelation of tree height. The analysis suggests that naturally developed P. sylvestris forests exhibit complex small-scale patterns of structural heterogeneity and spatial autocorrelation in tree size. These patterns may be important for stand-scale habitat diversity and can have aggregated effects on ecosystem dynamics at larger spatial scales though their influence on the spread of disturbance and regeneration after disturbance.  相似文献   

11.
Changes in composition and structure of plant communities in relation tothe soil and snow cover variation were analyzed along an altitudinal transect(1150–1750 m) from the mountain-temperate forests to a woodyshrub community and alpine meadows on Mt Velký Gápel', Slovakia.The soils below the treeline (1510 m) had a more developedorganic layer above the mineral substratum. Generally, soil depth decreased asthe altitude increased, although the maximum values were recognized at a middlealtitude in a beech stand. Snow was redistributed by westerly winds from theridgeline down to the upper forest margin. Mean snow depth decreased withaltitude up to almost snow-free sites around the summit. In the 48 plots at 16sites we recorded 118 taxa including 6 tree, 7 shrub, 18 grass, 42 herb, 5fern,25 moss and 15 lichen species. The species diversity showed no distinctrelationship to altitude but declined with canopy consolidation. The TWINSPANfloristic classification distinguished five groups of community typescharacterised by different dominants, and a further three clusters of samplesfrom transition zones. Horizontal compositional heterogeneity increased inareaswhere trees were aggregated and tree basal area was smaller. Vegetationcomposition became more patchy at open-canopy Acerpseudoplatanus–Abies alba mixed forest at 1150 m,in Picea abies forest limit 1470 m, andin Pinus mugo krummholz at 1590 m. Speciesturnover of the entire transect was 6.1 half-changes as estimated by DCA.Despite this heterogeneity, none of the 15 elevational bands had significantaggregation of species' limits. Vegetation varied continuously, with individualspecies overlapping in transition zones delimited by dominant taxa. Thecoincident aggregation of up-slope and down-slope boundaries was found at abelt1430–1510 m. This discrete ecotone corresponds to a shiftfrom the closed coniferous forest to P. mugo krummholz.Thesecond inherent up-slope boundary aggregation indicated the P.mugo krummholz – alpine meadow vegetation transition at1700 m. Spatial analysis (K-function) of eight forest plots(0.12 ha each) showed that at lower elevation, adult trees of thebroad-leaf forest were closer to a random arrangement while at higherelevation,trees of evergreen coniferous stands became aggregated toward the forest limitwith the highest intensity from 2 to 4 m. Altitudinal gradient andrelated factors explained 35% of the variance in vegetation data.Canonical correspondence analysis also showed that main vegetation changesabovethe treeline area were associated with the topographic pattern of pine shrubsand snow cover.  相似文献   

12.
《Plant Ecology & Diversity》2013,6(3-4):355-364
Background: The alpine treeline ecotone is regarded as a sensor of the effects of global change on alpine plant communities. However, little is known about how treeline dynamics influence the diversity and composition of alpine plant communities. Such information is necessary to forecast how ascending montane forests may affect the composition of alpine flora.

Aims: We analysed the temporal variations in tree cover, plant diversity and composition, and the effect of tree cover dynamics on field layer vegetation over a period of 11 years, at two alpine treeline ecotones in the central Pyrenees, Spain.

Methods: Tree and field layer vegetation was sampled in permanent transects in 1998 and 2009, using the point-intercept method. Temporal changes in tree cover, plant species richness and abundance were characterised along the ecotone by using a randomisation approach, rarefaction curves, and a non-parametric multivariate test, respectively.

Results: Tree cover increased significantly at one of the sites, whereas plant species richness only increased at the other site where tree cover had not changed. Vegetation composition changed significantly at both sites, but it was not spatially coupled with changes in tree cover along the ecotone.

Conclusions: A change of tree cover does not necessarily trigger changes in the ground flora at the treeline over relatively short periods (decade scale). The results challenge our ability to infer short-term biodiversity impacts from upslope advance of forests. Integrated tree and field layer monitoring approaches are necessary to produce a better understanding of the impact of ongoing global change on treeline ecotones.  相似文献   

13.
马锐骜  吴辉  王志瑞  戴冠华  于大炮  姜勇  李慧 《生态学报》2021,41(24):9847-9856
林线过渡带是指从郁闭森林上限到树种分布上限之间的区域,过渡带内生物多样性丰富,生态系统结构、功能和生态过程在很小的海拔梯度内发生剧烈变化,因此对全球气候变化和人类活动极为敏感。树岛是在林线过渡带内出现的斑块状或条带形不连续分布的树木集群,树岛内生存的树木通常能达到与较低海拔郁闭森林同样的高度和胸径,因此揭示树岛这一特殊生境的生态特征及其形成机制,对于预测未来气候变化下林线动态具有重要意义。以长白山岳桦林线过渡带一大型树岛作为研究对象,测定了土壤理化性质和土壤酶活性,采用宏基因组测序技术分析了微生物群落结构组成和功能基因丰度,通过与同海拔的开阔区生境进行对比,揭示了树岛这一特殊生境的土壤微生物群落结构特征和潜在生态功能,从土壤养分和土壤微生物学角度,阐明树岛形成的可能驱动机制。结果表明,树岛土壤的含水量、总碳、总氮和微生物生物量显著高于同海拔开阔区(P<0.05),与微生物r-策略相关的生理生化和遗传学指标,包括纤维素酶活性、放线菌相对丰度、与转录、防御、控制细胞周期相关的基因丰度、小分子碳降解基因丰度,均高于开阔区(P<0.05)。相反的,与微生物K-策略相关的指标,包括酸杆菌相对丰度、大分子碳降解基因相对丰度低于开阔区。揭示了树岛土壤微生物学特征,并从土壤微生物组学角度探讨了树岛形成的潜在机制,认为树岛内土壤养分增加并导致微生物群落r-策略倾向,这种变化反过来也可能促进树岛进一步扩大,进而影响林线动态。  相似文献   

14.
《Dendrochronologia》2014,32(3):210-219
European black pine (Pinus nigra ssp. nigra Arnold) encroachment at increasing elevation has been analyzed at four treeline ecotones of the central Apennines (Italy). The study sites are located along a North-South gradient of 170 km across Marche and Abruzzo regions in Central Italy. The aims of this study were: (i) to detect possible common patterns of structural attributes of black pine regeneration at the treeline ecotone; (ii) to date the seedlings germination and (iii) to assess the climate influence on the pine upward encroachment process also using intra-annual density fluctuations (IADFs) in tree-rings. We sampled 658 encroached black pine trees above the current treeline to the mountain top. All individuals were mapped and their basal stem diameter, total height, annual height increments and other structural attributes measured. One increment core was extracted from stem base of most samples for cambial age determination and detection of intra-annual density fluctuations (IADF). At two sites we also extracted cores at DBH from forest trees to assess climate–growth relationships of black pine. We used multivariate analysis (PCA) to explore the correlation structure of the main tree attributes, regression analysis to relate radial and height increment and dendroclimatic analysis to assess the influence of climate on tree growth and IADF formation.Most black pine trees were located at high altitude and their structural attributes were similar at the four sites where the pine encroachment process started between 30 and 40 years ago featuring similar germination peaks and growth patterns. Black pine is particularly sensitive to maximum temperatures and IADF occurred in mid-late summer with highest frequency peaks between 2003 and 2004. The pine encroachment process, besides the differences of environmental features and land use histories of the four study sites, appears synchronic and spatially diffused. Consistent tree-growth dynamics and the species adaptation to a warming climate are signals envisaging a possible treeline upward shift.  相似文献   

15.
With a new approach we assessed the relative contribution of stored and current carbon compounds to new shoot growth in alpine treeline conifers. Within a free air CO2 enrichment experiment at the alpine treeline in Switzerland, 13C-depleted fossil CO2 was used to trace new carbon in the two tree species Larix decidua L. and Pinus uncinata Ramond over two subsequent years. The deciduous L. decidua was found to supply new shoot growth (structural woody part) by 46% from storage. Surprisingly, the evergreen P. uncinata, assumed to use current-year photosynthates, also utilized a considerable fraction of storage (42%) for new wood growth. In contrast, the needles of P. uncinata were built up almost completely from current-year photosynthates. The isotopic composition of different wood carbon fractions revealed a similar relative allocation of current and stored assimilates to various carbon fractions. Elevated CO2 influenced the composition of woody tissue in a species-specific way, e.g. the water soluble fraction decreased in pine in 2001 but increased in larch in 2002 compared to ambient CO2. Heavy defoliation applied as an additional treatment factor in the second year of the experiment decreased the lipophilic fraction in current-year wood in both species compared to undefoliated trees. We conclude that storage may play an important role for new shoot growth in these treeline conifers and that altered carbon availability (elevated CO2, defoliation) results in significant changes in the relative amount of mobile carbon fractions in woody tissue. In particular, stored carbon seems to be of greater importance in the evergreen P. uncinata than has been previously thought.  相似文献   

16.
Demography, spatial pattern, and diversity of canopy and subcanopy trees, shrubs, and lianas were compared in two cool and two warm temperate North American forests, paired at 30° and 40° north latitudes. All woody stems 1 cm dbh in 16 randomly located, non-contiguous plots totalling 1 ha at each of the four sites were measured, mapped, and identified. Basal area and overall density did not differ between latitudes. Demographic and spatial analyses revealed remarkable similarity in spatial dispersion, irrespective of density or species composition. At all sites, dispersion of canopy trees was random but all understory stems were uniformly distributed relative to all canopy trees. Species diversity and vertical structure differed between the warm and cool temperate sites, especially in species composition of individual strata. Associations of understory species relative to canopy species were more random at 30° than at 40° north, where a higher degree of association between canopy and understory species' patterns, coupled with their size class distributions, suggested more lengthy regeneration cycles and an alternation of species assemblages. The forests at 30°, those subject to periodic canopy disturbance by hurricanes, had more vertical mixing of species (i.e., canopy species represented in all size classes), more tree saplings, and significantly more shrub and liana species.  相似文献   

17.
Aim Impacts of global change, such as land‐use and climate changes, could produce significant alterations in the elevational patterns of alpine tree line ecotones and their adjacent vegetation zones. Because the responses of the tree line to environmental variations are directly related to successful tree regeneration, understanding recruitment dynamics is an indispensable step in tree line research. We aimed to compare potential ecological limitations on recent tree line regeneration in undisturbed and disturbed sites by analysing the demographic structure and spatiotemporal patterns of recruits and large trees. Location Alpine tree line ecotones comprising Pinus uncinata in the Catalan Pyrenees (north‐east Spain) and Andorra. Methods We assessed the demographic structure and spatial pattern of recent recruitment using techniques of point‐pattern and autocorrelation analyses. A total of 3639 P. uncinata individuals were mapped, measured and aged at 12 sites. To evaluate the effects of past disturbances on recent tree line response we compared tree lines that had either been recently affected by human‐induced disturbances or had remained undisturbed for many years. Results The age structure of the tree lines, together with the lack of an age gap between seedlings and saplings, did not indicate recent episodes of high seedling mortality and suggest that recruitment has been frequent under current climate conditions. Seedlings appeared highly aggregated at short distances (up to 3 m), irrespective of disturbance history, and were spatially segregated with respect to large trees. However, we found no evidence of patches of even‐aged seedlings, and our results suggest that dispersal events at intermediate distances (10–17 m) may be frequent. Autocorrelation analyses revealed different patterns of density and age of recruits between disturbed and undisturbed tree lines, but the strength and small‐scale clustering of seedlings and saplings were very similar between sites. Main conclusions We found no recruitment limitation on recent tree line dynamics in the Pyrenees. Furthermore, processes affecting tree recruitment seem to be similar among populations regardless of their past disturbance regime. Our results suggest that constraints on tree line dynamics causing differential responses between sites may operate on older life stages and not upon recruits, and that such constraints may be more contingent on local site conditions than on disturbance history.  相似文献   

18.
Development of black spruce growth forms at treeline   总被引:1,自引:0,他引:1  
Pereg  Daria  Payette  Serge 《Plant Ecology》1998,138(2):137-147
Most treeline populations in northeastern Canada are monospecific stands of black spruce (Picea mariana [Mill.] B.S.P.), a hardy, cold-tolerant species able to withstand harsh climatic conditions under different growth forms. In the forest tundra, black spruce thrives in protected areas and exhibits a normal arborescent growth form, but in exposed sites, upright stems are damaged above the snowpack by snow abrasion and wind. In this study, the development of damaged growth forms was examined in a moderately exposed habitat. Five developmental stages were identified and described using detailed stem analysis of 13 spruce trees. Four different types of damaged growth forms were identified according to variations in supra-nival (above snow) stem height and number. At the site scale, the age structure of supra-nival shoots, based on a larger sample of 256 stems, was unimodal, suggesting a synchronous development of the spruce stand in which 46% of the shoots were initiated during the 1960s and 1970s. Subfossil trunks on the ground were all depressed trees, indicating that the former vegetation was a krummholz, not a forest. This indicates the recent development of the small-tree stand above the snowpack, probably triggered by recent milder conditions associated with snowier winters in the last decades.  相似文献   

19.
不同干扰措施对松材线虫入侵松林内物种多样性的影响   总被引:1,自引:0,他引:1  
经野外调查发现:松材线虫入侵松林后,对原先林型相同的两块染病松林而言,经过人为伐除和保留受害木这两种干扰措施后,任其自然恢复更新,后恢复的林型会大不相同,即对受害木采取不同的干扰措施会对染病松林内林下植被的更新产生不同的影响.基于以上出发点,以松材线虫入侵后采取不同伐除干扰措施的2个马尾松受害群落为研究对象,针对受害木移除和保留两种处理方式,选择α多样性指数函数Rényi指数为测量单位,探讨了不同受害木处理方式下植物多样性的变化规律.结果表明:受害木及时移走的松林内林下灌草多样性比受害木保留的要高.  相似文献   

20.
Background: Treeline ecotones represent environmental boundaries that fluctuate in space and time and thus induce changes in plant taxonomic and functional diversity.

Aims: To study changes through time in taxonomic and functional plant diversity patterns along the treeline ecotone.

Methods: In 2002, vegetation was sampled along a gradient from upper montane forest to the treeline–alpine transition in the South Ural Mountains, Russia. In 2014, vegetation was resampled and plant functional traits were collected. We studied spatial and temporal changes in plant species composition, functional composition and functional diversity.

Results: Species composition and diversity changed along the elevational gradient. The functional composition in height, leaf area, specific leaf area and leaf nitrogen content decreased with elevation, whereas functional composition of leaf carbon content increased. We found a temporal shift towards shorter plants with smaller leaves in treeline sites. Functional richness varied in several traits along the elevational gradient, while functional dispersion showed a trend towards increased functional dispersion in height, specific leaf area and leaf nitrogen in the treeline–tundra transition.

Conclusions: Tree encroachment across the treeline ecotone has resulted in a shift in plant species relative abundances and functional diversity, possibly affecting plant community assembly patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号