首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible effect of L-methionine supplements on the folate metabolism of division-synchronized Euglena gracilis (strain Z) cells has been examined. Cells receiving 1 mM L-methionine for four cell cycles were examined for folate derivatives, prior to and during cell division. Before cell division, methionine-supplemented cells contained less formylfolate but more methylfolate than unsupplemented cells. During division, both types of folates were present in lower concentrations in the supplemented cells. Growth in methionine for 10 and 34 hr also increased the levels of free aspartate, threonine, serine, cysteine and methionine relative to the controls. Methionine-supplemented cells contained ca 50% of the 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) activity per cell of unsupplemented control cultures and specific enzyme activity was reduced ca 90%. Supplemented cells contained almost twice as much serine hydroxymethyltransferase (EC 2.1.2.1) activity per cell but comparable levels of glycollate dehydrogenase. Growth in methionine also reduced the incorporation of formate-14C] into serine, RNA, DNA, adenine and protein methionine. In contrast, incorporation of glycine-[2-14C] and serine-[3-14C] into folate-related products was not greatly altered by this treatment. Levels of radioactivity in these products suggested that formate was a more important C1 unit source than glycine or serine when growth occurred in unsupplemented medium. It is concluded that methionine reduces formylfolate production by an effect on the cellular levels of formyltetrahydrofolate synthetase.  相似文献   

2.
Barley (Hordeum vulgare L.) mutants altered in the regulation of synthesis of aspartate-derived amino acids were sought by screening embryos for growth on a medium containing lysine plus threonine. One mutant, Rothamsted 2501, was selected with good growth. From the segregation of resistance in the following generations, it was concluded that the resistance was conferred by a dominant gene, Lt1. No homozygous Lt1/Lt1 fertile plants have been recovered. Partially purified aspartate kinase preparations from resistant and sensitive plants were separated on DEAE-cellulose chromatography into three peaks of activity (I, II, III) and the feedback regulatory properties of these peaks determined. These peaks are considered to be three isozymic forms of aspartate kinase, one predominantly sensitive to threonine and two sensitive to lysine or lysine plus S-adenosyl methionine. The feedback characteristics of one of the peaks of aspartate kinase activity from resistant plants were changed such that lysine was half-maximally inhibitory at 10 rather than 0.4mm. Increases in the concentrations of the free pools of threonine (4×) and methionine (2×) were measured in young plants grown on a basal medium. Threonine in the soluble fraction of mature seeds from resistant plants was increased from 0.8 to 9.6% of the total threonine content. The total content of both threonine and methionine of the seeds was increased by 6% compared with grain of similar nitrogen content.S.E.R. acknowledges the receipt of a Council of Europe Scholarship through The British Council. Part of this was also supported by EEC Grant 473.  相似文献   

3.
A mutant of Salmonella typhimurium was selected for its spontaneous resistance to the lysine analog, thialysine (S-2-aminoethyl cysteine). This strain, JB585, exhibits a number of pleiotropic properties including a partial growth requirement for threonine, resistance to thiaisoleucine and azaleucine, excretion of lysine and valine, and inhibition of growth by methionine. Genetic studies show that these properties are caused by a single mutation in the thrA gene which encodes the threonine-controlled aspartokinase-homoserine dehydrogenase activities. Enzyme assays demonstrated that the aspartokinase activity is unstable and the threonine-controlled homoserine dehydrogenase activity absent in extracts prepared from the mutant. These results explain the growth inhibition by methionine because the remaining homoserine dehydrogenase isoenzyme would be repressed by methionine, causing a limitation for threonine. The partial growth requirement for threonine during growth in glucose minimal medium may also, by producing an isoleucine limitation, cause derepression of the isoleucine-valine enzymes and provide an explanation for both the valine excretion, and azaleucine and thiaisoleucine resistance. The overproduction of lysine may confer the thialysine resistance.  相似文献   

4.
Abstract. Folate deficiency will induce abnormal deoxynucleoside triphosphate (dNTP) metabolism because folate-derived one-carbon groups are essential for de novo synthesis of purines and the pyrimidine, thymidylate. Under conditions of methionine deprivation, a functional folate deficiency for deoxynucleoside triphosphate synthesis is induced as a result of the irreversible diversion of available folates toward endogenous methionine resynthesis from homocysteine. The purpose of the present study was to examine the effect of nutritional folate and/or methionine deprivation in vitro on intracellular dNTP pools as related to DNA synthesis activity and cell cycle progression. Primary cultures of mitogen-stimulated rat splenic T-cells were incubated in complete RPMI 1640 medium or in custom-prepared RPMI 1640 medium lacking in folic acid and/or methionine. Parallel cultures, initiated from the same cell suspension, were analysed for deoxyribonucleotide pool levels and for cell proliferation. The distribution of cells within the cell cycle was quantified by dual parameter flow cytometric bromodeoxyuridine/propidium iodide DNA analysis which allows more accurate definition of DNA synthesizing S-phase cells than the traditional DNA-specific staining with propidium iodide alone. Relative to cells cultured in complete RPMI 1640 media, the cells cultured in media deficient in folate, methionine or in both nutrients manifested increases in the deoxythymidylate pool and an apparent depletion of the deoxyguanosine triphosphate pool. Both adenosine triphosphate and nicotinamide adenine diphosphate levels were significantly reduced with single or combined deficiencies of folate and methionine. These nucleotide pool alterations were associated with a decrease in the proportion of cells actively synthesizing DNA and an increase in cells in G2+ M phase of the cell cycle. Folate deprivation in the presence of adequate methionine produced a moderate decrease in DNA synthesizing cells over the 68 h incubation. However, methionine deprivation, in the presence or absence of folate, severely compromised DNA synthesis activity. These results are consistent with the established ‘methyl trap’ diversion of available folates towards the resynthesis of methionine from homocysteine and away from nucleotide synthesis. The data confirm the metabolic interdependence of folic acid and methionine and emphasize the pivotal role of methionine on the availability of folate one-carbon groups for deoxynucleotide synthesis. The decrease in DNA synthesis activity under nutrient conditions that negatively affect nucleotide biosynthesis suggest a possible role for abnormal dNTP metabolism in the regulation of cell cycle progression and DNA synthesis.  相似文献   

5.
The biosynthesis pathways of the essential amino acids methionine and threonine diverge from O-phosphohomoserine, an intermediate metabolite in the aspartate family of amino acids. Thus, the enzymes cystathionine-γ-synthase (CGS) in the methionine pathway and threonine synthase (TS), the last enzyme in the threonine pathway, compete for this common substrate. To study this branching point, we overexpressed TS in sense and antisense orientation in Arabidopsis plants with the aim to study its effect on the level of threonine but more importantly on the methionine content. Positive correlation was found not only between TS expression level and threonine content, but also between TS/threonine and CGS expression level. Plants expressing the sense orientation of TS showed a higher level of threonine, increased expression level of CGS, and a significantly higher level of S-methylmethionine, the transport form of methionine. By contrast, plants expressing the antisense form of TS showed lower levels of threonine and of CGS expression level. In these antisense plants, the methionine level increased up to 47-fold compared to wild-type plants. To study further the effect of threonine on CGS expression level, wild-type plants were irrigated with threonine and control plants were irrigated with methionine or water. While threonine increased the expression level of CGS but reduced that of TS, methionine reduced the expression level of CGS but increased that of TS. This data demonstrate that both methionine and threonine affect the two enzymes at the branching point, thus controlling not only their own level, but also the level of each other. This mechanism probably aids in keeping the levels of these two essential amino acids sufficiently high to support plant growth.  相似文献   

6.
Thiobacillus neapolitanus, a strict chemoautotroph, is sensitive to the addition of 10(-4)m methionine, histidine, threonine, or phenylalanine to the thiosulfate medium on which it grows. When histidine, threonine, or phenylalanine are added at the time of inoculation, spontaneous mutants tolerant to the three amino acids are selected. These mutants appear to result from a single genetic change; of 18 independently isolated histidine-tolerant mutants, all are also tolerant to phenylalanine and threonine. The uptake of (14)C-phenylalanine into exponentially growing cells of one such mutant is negligible in contrast with the uptake observed in the phenylalanine-sensitive parent. The addition of methionine to the medium slows growth, but spontaneous mutants are not selected. Inhibition of growth by these amino acids is observed only under conditions of amino acid imbalance; the addition of an equimolar mixture of 16 amino acids, in which each component is present at a concentration of 10(-3)m, causes no inhibition. Histidine and threonine inhibition may be released by equimolar amounts of any one of seven amino acids: serine, alanine, glycine, leucine, valine, tryptophan, or tyrosine; histidine inhibition is also released by isoleucine, and threonine inhibition by methionine. None of the inhibiting amino acids inhibits oxidation of thiosulfate in cell suspensions. A group of hexoses, pentoses, and Krebs cycle intermediates were tested for inhibition of growth or release of inhibition by histidine, phenylalanine, or threonine, but no effects, either inhibition or relief of inhibition, were found.  相似文献   

7.
The aims of this work were to improve a basal synthetic medium (BM) for the growth of Lactobacillus plantarum strains and to establish their amino-acid requirements. Amino-acid use was analyzed in the most nutritionally demanding bacterium. First, the improved BM (L. plantarum synthetic medium [LPSM]) was created by increasing some vitamins in the BM, especially p-aminobenzoic acid, vitamin B12, and biotin; 5-fold phenylalanine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, and tryptophan; and 10-, 60-, and 75-fold valine, arginine, and tyrosine, respectively. With these additions, the N8 and N4 strains of L. plantarum grew rapidly to reach final cell densities similar to those obtained in Mann–Rogosa–Sharpe medium. When cysteine, leucine, valine, isoleucine, threonine, and glutamic acid were individually removed from this medium, bacterial growth significantly decreased or ceased, indicating that these amino acids are essential for growth. The N4 strain also required lysine and tryptophan in addition to the six amino acids necessary for growth. L. plantarum N4 mainly consumed essential amino acids, such as valine, lysine, cysteine, and threonine as well as the stimulatory amino acid, arginine. Thus, the BM was improved mainly on the basis of annulling limitations with respect to amino acids. With this, improved medium cell densities in the order of 109 colony-forming units/mL have been achieved, indicating that LPSM medium could be used for conducting metabolic and genetic studies on L. plantarum. Their low levels in orange juice suggest that these amino acids may not satisfy the total nitrogen requirement for the development of L. plantarum in the natural environment.  相似文献   

8.
The specific activities of three B12-dependent enzymes in Rhizobium meliloti were compared in relation to morphological changes in the bacterium. The critical levels of ribonucleotide reductase and methylmalonyl-CoA mutase seemed to be maintained, while the level of methionine synthase was probably insufficient for cell multiplication. A close relationship was observed between the methionine synthase level and morphological changes in the bacterium. The addition of folate with methionine to the cobalt-deficient medium did not have a positive effect on bacterial growth. A sufficient amount of tetrahydrofolate was detected in the cobalt-deficient elongated cells. These findings might suggest the important role of methionine synthase in cell multiplication, which was unpredictable from the methylfolate trap hypothesis.  相似文献   

9.
Tissue culture selection techniques were used to isolate a maize (Zea mays L.) variant D33, in which the aspartate family pathway was less sensitive to feedback inhibition by lysine. D33 was recovered by successively subculturing cultures originally derived from immature embryos on MS medium containing growth-inhibitory levels of lysine+threonine. The ability of D33 to grow vigorously on lysine+ threonine medium was retained after growth for 12 months on nonselection medium. New cultures initiated from shoot tissues of plants regenerated from D33 also were resistant to lysine+threonine inhibition. The Ki of aspartokinase for its feedback inhibitor, lysine, was about 9-fold higher in D33 than for the enzyme from unselected cultures. The free pools of lysine, threonine, isoleucine and methionine were increased 2–9-fold in D33 cultures. This was consistent with the observed change in feedback regulation of aspartokinase, the first enzyme common to the biosynthesis of these amino acids in the aspartate pathway. The accumulated evidence including the stability of resistance in the cultures, the resistance of cultures initiated from regenerated plants, the altered feedback regulation, and the increased free amino acids, indicates a mutational origin for these traits in line D33.Abbreviation LT lysine+threonine in equimolar concentration Paper No. 10880, Scientific Journal Series, Minnesota Agricultural Expertment Station  相似文献   

10.
Extracellular proteases have been shown to be virulence factors in fungal pathogenicity toward insects. We examined the production of extracellular proteases, subtilisin-like activity (Pr1) and trypsin-like activity (Pr2), by Beauveria bassiana CG425, which is a fungus of interest for control of the grasshopper Rhammatocerus schistocercoides. To access the role of these proteases during infection of R. schistocercoides, we analyzed their secretion during fungus growth either in nitrate-medium or in cuticle-containing medium supplemented with different amino acids. The enhancing effect of cuticle on Pr1 and Pr2 production suggests that these protease types may be specifically induced by components of the grasshopper cuticle. In medium supplemented with methionine a high level of Pr1 was observed. The remaining amino acids tested did not induce the protease to the levels seen with cuticle. The amino acid methionine seems to play a regulatory role in Pr1 secretion by B. bassiana, since both induction and repression seem to be dependent on the concentration of the amino acid present in the culture medium.  相似文献   

11.
The activity of three enzymes, aspartokinase, homoserine dehydrogenase, and homoserine kinase, has been studied in the industrial strainSaccharomyces cerevisiae IFI256 and in the mutants derived from it that are able to overproduce methionine and/or threonine. Most of the mutants showed alteration of the kinetic properties of the enzymes aspartokinase, which was less inhibited by threonine and increased its affinity for aspartate, and homoserine dehydrogenase and homoserine kinase, which both lost affinity for homoserine. Furthermore, they showed in vitro specific activities for aspartokinase and homoserine kinase that were higher than those of the wild type, resulting in accumulation of aspartate, homoserine, threonine, and/or methionine/S-adenosyl-methionine (Ado-Met). Together with an increase in the specific activity of both aspartokinase and homoserine kinase, there was a considerable and parallel increase in methionine and threonine concentration in the mutants. Those which produced the maximal concentration of these amino acids underwent minimal aspartokinase inhibition by threonine. This supports previous data that identify aspartokinase as the main agent in the regulation of the biosynthetic pathway of these amino acids. The homoserine kinase in the mutants showed inhibition by methionine together with a lack or a reduction of the inhibition by threonine that the wild type undergoes, which finding suggests an important role for this enzyme in methionine and threonine regulation. Finally, homoserine dehydrogenase displayed very similar specific activity in the mutants and the wild type in spite of the changes observed in amino acid concentrations; this points to a minor role for this enzyme in amino acid regulation.  相似文献   

12.
Ten amino acids, namely, arginine, histidine, lysine, tryptophane, methionine, phenylalanine, leucine, valine, threonine and serine were indispensable for growth of rabbit blastocysts in vitro; others were nonessential. Of all the essential amino acids, arginine and lysine were required in relatively high concentrations, 10?2 M and 10?3 M, respectively, for optimum growth. Complete omission of the non-essential amino acids from the medium markedly reduced blastocyst growth. Interaction between serine and glycine demonstrated a partial sparing action on serine by glycine, similar to that observed between methionine and cysteine. The amino acid composition of a culture medium capable of providing continuous and consistent growth of rabbit blastocysts in vitro is described.  相似文献   

13.
Arginine, cystine, histidine, leucine and threonine were needed for outgrowth of the mouse blastocyst in vitro. Omission of lysine, methionine, phenylalanine, tryptophane and tyrosine from the culture medium markedly reduced blastocyst outgrowth, but did not inhibit it completely; while omission of isolecine and valine reduced the extent of outgrowth only slightly. Blastocysts kept for seven days in a free-floating condition by omitting arginine and leucine from the medium, grew out when these amino acids were added. Such behavior may be analogous to delayed implantation in utero and suggests that the free amino acid content of the uterus could be an important factor in the control of implantation. Blastocysts delayed from implanting in the uterus by ovariectomy were activated to outgrowth in a complete medium, but the intracellular changes associated with outgrowth occurred more slowly than in undelayed blastocysts.  相似文献   

14.
Excised wheat (Triticum aestivum L. var. Maris Freeman) and barley (Hordeum vulgare L. var. Maris Mink) embryos were grown on medium containing both nitrate and ammonium ions. Addition of lysine (1 mM) plus threonine (1 mM) caused a synergistic inhibition of growth measured by length of first leaf or dry weight. The inhibition was specifically relieved by methionine, homocysteine and homoserine. Threonine at 0.2–0.3 mM caused half-maximal inhibition of growth at all lysine concentrations whereas lysine increased the synergistic inhibition up to 3 mM. The inhibition is explained by a model in which lysine acts as a feedback inhibitor of aspartate kinase and threonine of homoserine dehydrogenase. This is compatible with published studies of the enzymes involved. The implications of these findings for using lysine plus threonine as a selection system for lysine-overproducing cereals are discussed.Abbreviations Lys Lysine - Thr Threonine - Met Methionine - Hser Homoserine - Hcys Homocysteine  相似文献   

15.
There exists in Escherichia coli a known set of enzymes that were shown to function in an efficient and concerted way to convert threonine to serine. The sequence of reactions catalyzed by these enzymes is designated the Tut cycle (threonine utilization). To demonstrate that the relevant genes and their protein products play essential roles in serine biosynthesis, a number of mutants were analyzed. Strains of E. coli with lesions in serA, serB, serC, or glyA grew readily on minimal medium supplemented with elevated levels of leucine, arginine, lysine, threonine, and methionine. No growth on this medium was observed upon testing double mutants with lesions in one of the known ser genes plus a second lesion in glyA (serine hydroxymethyltransferase), gcv (the glycine cleavage system), or tdh (threonine dehydrogenase). Pseudorevertants of ser mutants capable of growth on either unsupplemented minimal medium or medium supplemented with low levels of leucine, arginine, lysine, threonine, and methionine were isolated. At least two unlinked mutations were associated with such phenotypes.  相似文献   

16.
Ethionine reduced both the growth rate and the final growth level of Serratia marcescens Sr41. Growth inhibition was completely reversed by methionine. Strain D-315, defective in homoserine dehydrogenase I, was more sensitive to ethionine-mediated growth inhibition than was the wild-type strain. Ethionine-resistant mutants were isolated from cultures of strain D-316, which was derived from strain D-315 as a threonine deaminase-deficient mutant. Of 60 resistant colonies, 7 excreted threonine on minimal agar plates. One threonine-excreting strain, ETr17, was highly resistant to ethionine and, moreover, insensitive to methionine-mediated growth inhibition, whereas the parent strain was sensitive. When cultured in minimal medium with or without excess methionine, strain ETr17 had a higher homoserine dehydrogenase level than did strain D-316. The homoserine dehydrogenase activity was not inhibited by threonine or methionine. Transductional analysis revealed that the ethionine-resistant (etr-1) mutation carried by strain ETr17 was located in the metBM-argE region and caused the derepressed synthesis of homoserine dehydrogenase II. Strain ETr17 had a higher aspartokinase level than did the parent strain. By transductional cross with the argE+ marker, the etr-1 mutation was transferred into strain D-562 which was derived from D-505, a strain defective in aspartokinases I and III. The constructed strain had a higher aspartokinase level than did strain D-505 in medium with or without excess methionine, indicating that the etr-1 mutation led to the derepressed synthesis of aspartokinase II. Strain ETr17 produced about 8 mg of threonine per ml of medium containing sucrose and urea.  相似文献   

17.
A strain of Cyanidium caldarium has been studied which is able to grow in darkness using amino acids as sole energy sources. During growth ammonia was released into the external medium as a catabolic end product. With either threonine or glutamate similar rates of ammonia formation and similar kinetics of growth were observed. These observations suggest that the amounts of energy made available for cell growth from the two amino acids are equivalent.Deamination of threonine and glutamate by whole cells exhibited similar temperature-dependence profiles and similar Arrhenius energies of activation. Thus it is suggested that a partially common pathway is involved in the catabolism of these amino acids. Threonine dehydrase may play a role in this pathway.The threonine dehydrase of C. caldarium was inhibited by isoleucine and activated by valine. In the absence of isoleucine no cooperative effect of threonine was observed.Succinate or 2-ketoglutarate supported a faster growth than did amino acids. Growth tests in the presence of both a krebs cycle intermediate and an amino acid have shown that the oxidative metabolism of amino acids is in some way controlled by the more suitable energy sources, presumably through catabolite inhibition and catabolite repression.  相似文献   

18.
Regulation of S-Adenosylmethionine Synthetase in Escherichia coli   总被引:26,自引:20,他引:6       下载免费PDF全文
Addition of methionine to the growth medium of Escherichia coli K-12 leads to a reduction in the specific activity of S-adenosylmethionine (SAM) synthetase. Thus the enzyme appears to be repressible rather than inducible. Mutant strains (probably metJ(-)) are constitutive for SAM synthetase as well as for the methionine biosynthetic enzymes, suggesting that the regulatory systems for these enzymes have at least some elements in common. Cells grown to stationary phase in complete medium, which have low specific activities of the enzymes, were routinely used for derepression experiments. The lag in growth and derepression when these cells are incubated in minimal medium is shortened by threonine. Ethionine, norleucine, and alpha-methylmethionine are poor substrates or nonsubstrates for SAM synthetase and are ineffective repressors. Selenomethionine, a better substrate for SAM synthetase than methionine, is also slightly more effective at repression than methionine. Although SAM is considered to be a likely candidate for the corepressor in the control of the methionine biosynthetic enzymes, addition of SAM to the growth medium does not cause repression. Measurement of SAM uptake shows that too little is taken into the cells to have a significant effect, even if it were active in the control system.  相似文献   

19.
A lysine-producing mutant Brevibacterium flavum HUT 8052, a threonine plus methionine (or threonine plus homoserine) auxotroph, grew rapidly as nearly as the wild strain in a medium supplemented with NaCl (60 µg/ml), threonine (100 µg/ml), and methionine (33.3 µg/ml). With NaCl concentrations less than 20 µg/ml, the mutant grew little or very slowly, The peculiar growth behavior of the mutant including the above phenomenon could be reasonably explained by the finding of Na+-dependent amino acids transport and the feedback inhibition of homoserine dehydrogenase by threonine in the bacterium.

The threonine transport was stimulated by Na+ and Li+. though the latter being less effective. The transport of threonine was inhibited by serine. The uptake of serine, isoleucine, leucine and valine was also stimulated by Na+  相似文献   

20.
Aspartate kinase (EC 2.7.2.4.) has been purified from 7 day etiolated wheat (Triticum aestivum L. var. Maris Freeman) seedlings and from embryos imbibed for 8 h. The enzyme was 50% inhibited by 0.25 mM lysine. In this study wheat aspartate kinase was not inhibited by threonine alone or cooperatively with lysine; these results contrast with those published previously. In vivo regulation of the synthesis of aspartate-derived amino acids was examined by feeding [14C]acetate and [35S]sulphate to 2–3 day germinating wheat embryos in culture in the presence of exogenous amino acids. Lysine (1 mM) inhibited lysine synthesis by 86%. Threonine (1 mM) inhibited threonine synthesis by 79%. Lysine (1 mM) plus threonine (1 mM) inhibited threonine synthesis by 97%. Methionine synthesis was relatively unaffected by these amino acids, suggesting that there are important regulatory sites other than aspartate kinase and homoserine dehydrogenase. [35S]sulphate incorporation into methionine was inhibited 50% by lysine (2 mM) plus threonine (2 mM) correlating with the reported 50% inhibition of growth by these amino acids in this system. The synergistic inhibition of growth, methionine synthesis and threonine synthesis by lysine plus threonine is discussed in terms of lysine inhibition of aspartate kinase and threonine inhibition of homoserine dehydrogenase.Abbreviations AEC S-(2-aminoethyl) cysteine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号