首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The developing central nervous system is partitioned into compartments by boundary cells, which have different properties than compartment cells, such as forming neuron-free zones, proliferating more slowly and acting as organizing centers. We now report that in mice the bHLH factor Hes1 is persistently expressed at high levels by boundary cells but at variable levels by non-boundary cells. Expression levels of Hes1 display an inverse correlation to those of the proneural bHLH factor Mash1, suggesting that downregulation of Hes1 leads to upregulation of Mash1 in non-boundary regions, whereas persistent and high Hes1 expression constitutively represses Mash1 in boundary regions. In agreement with this notion, in the absence of Hes1 and its related genes Hes3 and Hes5, proneural bHLH genes are ectopically expressed in boundaries, resulting in ectopic neurogenesis and disruption of the organizing centers. Conversely, persistent Hes1 expression in neural progenitors prepared from compartment regions blocks neurogenesis and reduces cell proliferation rates. These results indicate that the mode of Hes1 expression is different between boundary and non-boundary cells, and that persistent and high levels of Hes1 expression constitutively repress proneural bHLH gene expression and reduce cell proliferation rates, thereby forming boundaries that act as the organizing centers.  相似文献   

5.
6.
7.
8.
Hes1 is a negative regulator of inner ear hair cell differentiation   总被引:13,自引:0,他引:13  
Hair cell fate determination in the inner ear has been shown to be controlled by specific genes. Recent loss-of-function and gain-of-function experiments have demonstrated that Math1, a mouse homolog of the Drosophila gene atonal, is essential for the production of hair cells. To identify genes that may interact with Math1 and inhibit hair cell differentiation, we have focused on Hes1, a mammalian hairy and enhancer of split homolog, which is a negative regulator of neurogenesis. We report here that targeted deletion of Hes1 leads to formation of supernumerary hair cells in the cochlea and utricle of the inner ear. RT-PCR analysis shows that Hes1 is expressed in inner ear during hair cell differentiation and its expression is maintained in adulthood. In situ hybridization with late embryonic inner ear tissue reveals that Hes1 is expressed in supporting cells, but not hair cells, of the vestibular sensory epithelium. In the cochlea, Hes1 is selectively expressed in the greater epithelial ridge and lesser epithelial ridge regions which are adjacent to inner and outer hair cells. Co-transfection experiments in postnatal rat explant cultures show that overexpression of Hes1 prevents hair cell differentiation induced by Math1. Therefore Hes1 can negatively regulate hair cell differentiation by antagonizing Math1. These results suggest that a balance between Math1 and negative regulators such as Hes1 is crucial for the production of an appropriate number of inner ear hair cells.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
In the pituitary, the transition from proliferating progenitor cell into differentiated hormone producing cell is carefully regulated in a time-dependent and spatially-restricted manner. We report that two targets of Notch signaling, Hes1 and Prop1, are needed to maintain progenitors within Rathke's pouch and for the restriction of differentiated cells to the ventral pituitary. We observed ACTH and αGSU producing cells that had prematurely differentiated within Rathke's pouch along with correlated ectopic expression of Mash1 only when both Prop1 and Hes1 were lost. We also discovered that downregulation of N-cadherin expression in cells as they transition from Rathke's pouch to the anterior lobe appears to be essential for their movement. In the Prop1 mutant, cells are trapped in Rathke's pouch and N-cadherin expression remains high. Also, Slug, a marker of epithelial-to-mesenchymal transition, is absent in the dorsal anterior lobe. When Hes1 is lost in the Prop1 mutant, N-cadherin is downregulated and cells are able to exit Rathke's pouch but have lost their migrational cues and form ectopic foci surrounding Rathke's pouch. Our data reveal important overlapping functions of Hes1 and Prop1 in cell differentiation and movement that are critical for pituitary organogenesis.  相似文献   

19.
To clarify the mechanisms that regulate neuroendocrine differentiation of fetal lung epithelia, we have studied the expression of the mammalian homologs of achaete-scute complex (Mash1) (Ascl1 - Mouse Genome Informatics); hairy and enhancer of split1 (Hes1); and the expression of Notch/Notch-ligand system in the fetal and adult mouse lungs, and in the lungs of Mash1- or Hes1-deficient mice. Immunohistochemical studies revealed that Mash1-positive cells seemed to belong to pulmonary neuroendocrine cells (PNEC) and their precursors. In mice deficient for Mash1, no PNEC were detected. Hes1-positive cells belong to non-neuroendocrine cells. In the mice deficient in Hes1, in which Mash1 mRNA was upregulated, PNEC appeared precociously, and the number of PNEC was markedly increased. NeuroD (Neurod1 - Mouse Genome Informatics) expression in the lung was detected in the adult, and was enhanced in the fetal lungs of Hes1-null mice. Expression of Notch1, Notch2, Notch3 and Notch4 mRNAs in the mouse lung increased with age, and Notch1 mRNA was expressed in a Hes1-dependent manner. Notch1, Notch2 and Notch3 were immunohistochemically detected in non-neuroendocrine cells. Moreover, analyses of the lungs from the gene-targeted mice suggested that expression of Delta-like 1 (Dll1 - Mouse Genome Informatics) mRNA depends on Mash1. Thus, the neuroendocrine differentiation depends on basic helix-loop-helix factors, and Notch/Notch-ligand pathways may be involved in determining the cell differentiation fate in fetal airway epithelium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号