首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of neuropeptide Y (NPY)-like immunoreactivity (-LI) in sympathetic perivascular nerves and the functional effects of NPY and noradrenaline (NA) on vascular tone were studied in skeletal muscle of various species. A dense network of NPY-LI was found around arteries and arterioles but not venules in the gluteus maximus muscle of man, gracilis muscle of dog, tenuissimus muscle of rabbit and quadriceps muscle of cat, rat, guinea pig and pig. The distribution of NPY-immunoreactive (-IR) nerves was closely correlated to the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH)-positive fibers, two markers for noradrenergic neurons. Double-staining experiments revealed that NPY- and TH-IR as well as NPY- and DBH-IR nerve fibers around arteries and arterioles were identical. The veins and venules, however, lacked or had a very sparse innervation of NPY-, TH- and DBH-positive fibers. The NPY- and TH-IR nerves in quadriceps muscle of the guinea pig were absent after treatment with 6-hydroxydopamine. Lumbosacral sympathetic ganglia from the same species contained many NPY-positive cells which were also TH- and DBH-IR. NPY-LI was also detected by radioimmunoassay in extracts of skeletal muscle from guinea pig, rabbit, dog, pig and man as well as of lumbosacral sympathetic ganglia. The content of NPY-LI in skeletal muscle was relatively low (0.1-0.4 pmol/g), whereas lumbosacral sympathetic ganglia had a much higher content (48-88 pmol/g). NPY (10(-7) M) contracted arterioles in the tenuissimus muscle of the rabbit to a similar extent (by 65%) as NA (10(-6) M), as studied by intravital microscopy in vivo. NPY had no effect on the corresponding venules while NA caused a slight contraction of these vessels. In vitro studies of small human skeletal muscle arteries and veins revealed that NPY was more potent than NA in contracting the arteries, and the highest concentration of NPY (5 x 10(-7) M) caused a contraction of a similar magnitude as NA 10(-5) M. NA contracted veins from human skeletal muscle, while NPY had only small effects. It is suggested that NPY, together with NA, could be of importance for sympathetic control of skeletal muscle blood flow.  相似文献   

2.
Neuropeptide Y (NPY) is a recently discovered neuropeptide with vasoconstrictor effects when given in vivo. It occurs in many sympathetic neurons, where it appears to coexist with noradrenaline (NA). It is wellknown that profound changes in the levels of uterine NA occur in many species during pregnancy. Therefore we have investigated the distribution of catecholamine neurons and NPY by immunohistochemistry in the pregnant and nonpregnant guinea pig uterus. In the virgin uterus NPY-like immunoreactivity was present in nerve fibres and terminals in the smooth muscle layers of the uterine horns and around blood vessels. The distribution of NPY fibres was very similar to that of noradrenergic nerves visualized with antibodies against the catecholamine synthesizing enzyme tyrosine hydroxylase (TH). In the pregnant uterus, NPY- and TH-like immunoreactivity disappeared almost completely. In the cervix, a slight decrease of immunoreactivity was observed, whereas in the ovaries no changes were noted between the pregnant and nonpregnant condition. The results indicate that NPY and catecholamines coexists in the adrenergic neurons of the guinea pig uterus, cervix and ovary and that they vary together in the myometrium during pregnancy. We suggest that NPY may be of functional importance for the pregnant uterus.  相似文献   

3.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

4.
Summary Neuropeptide Y (NPY) is a recently discovered neuropeptide with vasoconstrictor effects when given in vivo. It occurs in many sympathetic neurons, where it appears to coexist with noradrenaline (NA). It is wellknown that profound changes in the levels of uterine NA occur in many species during pregnancy. Therefore we have investigated the distribution of catecholamine neurons and NPY by immunohistochemistry in the pregnant and nonpregnant guinea pig uterus. In the virgin uterus NPY-like immunoreactivity was present in nerve fibres and terminals in the smooth muscle layers of the uterine horns and around blood vessels. The distribution of NPY fibres was very similar to that of noradrenergic nerves visualized with antibodies against the catecholamine synthesizing enzyme tyrosine hydroxylase (TH). In the pregnant uterus, NPY- and TH-like immunoreactivity disappeared almost completely. In the cervix, a slight decrease of immunoreactivity was observed, whereas in the ovaries no changes were noted between the pregnant and nonpregnant condition. The results indicate that NPY and catecholamines coexists in the adrenergic neurons of the guinea pig uterus, cervix and ovary and that they vary together in the myometrium during pregnancy. We suggest that NPY may be of functional importance for the pregnant uterus.  相似文献   

5.
Summary Retrograde transport studies using Fast Blue dye demonstrated that the ductus deferens, seminal vesicle, prostate and rectum, but not the urinary bladder of the male guinea pig are at least in part innervated by the anterior major pelvic ganglion. In the ductus deferens, seminal vesicle and prostate innervation is derived from ipsilateral and contralateral ganglia. In addition to retrograde studies, dye-filled neurons were analysed immunohistochemically for neuronal markers and associations with specifically identified neuronal projections. Neurons of the ganglion projecting to the ductus deferens either contained tyrosine hydroxylase alone, tyrosine hydroxylase and neuropeptide Y, neuropeptide Y alone, neuropeptide Y and vasoactive intestinal peptide, or vasoactive intestinal peptide alone. These neurons were associated with three classes of neuronal projections, substance P-, leucine-enkephalin-, and methionine-enkephalin-immunoreactive. Neurons projecting to the seminal vesicles were similar to the neurons supplying the ductus deferens, except none of the seminal vesicle-specific neurons exhibited vasoactive intestinal peptide immunoreactivity. Neurons supplying the prostate were immunoreactive for either tyrosine hydroxylase or neuropeptide Y; these neurons were infrequently associated with the three classes of varicose neuronal projections. Neurons projecting to the rectum contained neuropeptide Y and were only associated with methionine-enkephalin immunoreactive neuronal projections in one animal.  相似文献   

6.
Summary The localization and distribution of neuropeptide Y-like immunoreactivity in the guinea-pig heart were studied by use of immunohistochemical methods. A widespread distribution of immunoreactive processes was observed in all regions of the heart. They occur either singly or together with several other immunoreactive processes and are most often aligned parallel to the myocardial bundles. A dense network of processes is present in the region of both the sinuatrial and atrioventricular nodes and single fibers are occasionally observed to be closely associated with nodal ganglion cells. Positive cell bodies were not seen within the heart. All small, medium and large coronary vessels are surrounded by a dense network of immunoreactive processes. A rich innervation at the media-adventitia junction of the aorta, pulmonary trunk, superior and inferior vena cava was also observed. Comparison of adjacent sections stained with antisera directed to avian pancreatic polypeptide, carboxyl-terminal hexapeptide of pancreatic polypeptide or neuropeptide Y demonstrated a very similar immunoreactive pattern, suggesting that these antisera are reacting with the same or a closely related substance. Likewise, the same immunoreactive patterns were observed in adjacent sections incubated in antiserum to neuropeptide Y or tyrosine hydroxylase, and analysis of elution-restained sections demonstrated that the same processes contain both neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity. Neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity was reduced by the same magnitude after treatment with the sympathetic neurotoxin 6-hydroxydopamine, but it was not affected by the primary sensory neurotoxin capsaicin. Furthermore, the pattern of neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity did not match the staining patterns observed with antisera to vasoactive intestinal polypeptide or substance P or with the acetylcholinesterase staining pattern. In conclusion, neuropeptide Y-like immunoreactivity in the heart and great vessels coexists with that for catecholamines and is likely to originate from sympathetic ganglia.  相似文献   

7.
The cutaneous nerves of rat, cat, guinea pig, pig, and man were studied by immunocytochemistry to compare the staining potency of general neural markers and to investigate the density of nerves containing peptides. Antiserum to protein gene product 9.5 (PGP 9.5) stained more nerves than antisera to neurofilaments, neuron-specific enolase (NSE), and synaptophysin or histochemistry for acetylcholinesterase (AChE). Peptidergic axons showed species variation in density of distribution and were most abundant in pig and fewest in man. However, the specific peptides in nerves innervating the various structures were consistent between species. Nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP) and/or vasoactive intestinal polypeptide (VIP) predominated in all the species; those immunoreactive to tachykinins (substance P and neurokinin A [NKA]) and neuropeptide tyrosine (NPY) were less abundant. Neonatal capsaicin, at the doses employed in this study, destroyed approximately 70% of CGRP- and tachykinin-immunoreactive sensory axons; whereas 6-hydroxydopamine (6-OHDA) at the doses employed resulted in a complete loss of NPY and tyrosine hydroxylase (TH) immunoreactivity without affecting VIP, CGRP, and tachykinins. Thus, this study confirms that antiserum to PGP 9.5 is the most suitable and practical marker for the demonstration of cutaneous nerves. Species differences exist in the density of peptidergic innervation, but apparently not for specific peptides. Not all sensory axons immunoreactive for CGRP and substance P/NKA are capsaicin-sensitive. However, all sympathetic TH- and NPY-immunoreactive axons are totally responsive to 6-OHDA; but no change was seen in VIP-immunoreactive axons, suggesting some demarcation of cutaneous adrenergic and cholinergic sympathetic fibers.  相似文献   

8.
BACKGROUND: Analysis of the innervation pattern of the thoracic duct in young and elderly human subjects has been performed. The subdivision of the vessels in cervical and lumbar region were taken in consideration. MeTHODS AND RESULTS: Immunostaining for general nerve fibers with a PGP 9.5 marker disclosed a diffuse innervation of the thoracic duct in young subjects, which was strongly reduced in elderly subjects. In young subjects, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) immunoreactive fibers, markers of noradrenergic postganglionic sympathetic fibers, were frequent; choline acetyltransferase (ChAT) immunoreactive fibers, marker of cholinergic parasympathetic nerve fibers, were also well represented. Therefore, the influence of sympathetic and parasympathetic nerve systems on the thoracic duct can be confirmed. The immunoreactivity of vasoactive intestinal peptide (VIP), a neuropeptide frequently present in cholinergic parasympathetic nerve fibers, was scarcely present. Dopamine-positive fibers were observed in few short nerve fibers. Substance P (SP)-positive fibers were widely distributed in the medial and intimal smooth muscle layers, suggesting their involvement as contractile modulating fibers and sensitive fibers. In elderly subjects, an evident reduction of all specific nerve fibers analyzed was detected, the ChAT-positive fibers being the most affected. CONCLUSIONS: The lymphatic vessel thoracic duct is able to regulate hydrodynamic lymph flow by intrinsic contraction of its smooth muscle layer. Therefore, analysis of the thoracic duct innervation pattern may be important in assessing the regulation of vessel contraction. These findings called attention to the reduction of lymphatic drainage functionality affecting fluid balance in the elderly.  相似文献   

9.
Summary In the present immunohistochemical study, the distribution of nerve fibers containing neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) in the larynx was examined and compared with that of fibers containing tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (BDH), and with that of acetylcholinesterase (AChE)-positive nerve fibers, in intact and vagotomized rats and in rats subjected to removal of the superior cervical ganglion (SCG). Fibers showing TH/DBH-like immunoreactivity (LI) were only found in the walls of arteries and arterioles, whereas AChE-positive nerve fibers were located close to the acini and ducts of the glands, in blood vessel walls, in the perichondrium and in the lamina propria. NPY-LI and VIP-LI coexisted in local AChE-positive ganglionic cells and in a subpopulation of the AChE-positive fibers, NPY-LI also being present in some periarterial fibers showing TH/DBH-LI. Unilateral removal of the SCG eliminated the TH/DBH-innervation in the upper but not the lower parts of the larynx ipsilaterally, whereas the NPY-innervation of the arteries in the upper parts only partly disappeared and the NPY-innervation of the other structures remained unchanged. The distribution of VIP-innervation was unchanged after vagotomy and removal of the SCG. The results suggest that VIP is present in the postganglionic parasympathetic innervation, whereas NPY is present in both the postganglionic parasympathetic and sympathetic innervation of the rat larynx.  相似文献   

10.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

11.
Summary The aim of this investigation was to examine if 5-hydroxytryptamine (5-HT) is detectable not only in mast cells but also in sympathetic nerve fibres in oral sites of the rat, including the periodontal ligament, pulp, palatal mucosa, and vestibular sulcus. Antibodies against 5-HT and tyrosine hydroxylase were used. Maxillae from rats were dissected free, fixed, decalcified, cut transversally, and processed for immunohistochemistry. Nerve fibres showing 5-HT-like immunoreactivity were regularly observed in the walls of the arteries and arterioles in the vestibular sulcus and the periodontal ligament. However, 5-HT-like immunoreactivity was not seen in the walls of the vessels of the palatal mucosa. Interestingly, 5-HT-like immunoreactivity coexisted with tyrosine hydroxylase-like immunoreactivity in the innervation of the periodontal ligament and the vestibular sulcus. Thus, the present study gives morphological correlate for the occurrence of effects of 5-HT derived not only from mast cells but also from sympathetic nerve fibres in oral tissues. The source of 5-HT in the nerve fibres as well as the functional implications of the observations remain to be determined.  相似文献   

12.
Summary Traditional protocols for the immunohistochemical localization of peptides and tyrosine hydroxylase (TH) in nerve fibers in cryostat sections require the tissue to be thoroughly fixed and rinsed and to be processed for the cryostat sectioning and the immunohistochemical staining more or less directly after freezing. In the present study it was tested whether also unfixed, rapidly frozen tissue, conforming to guinea pig and bovine heart specimens, can be used for the visualization of neuropeptides [neuropeptide Y (NPY) and substance P (S P)] and TH in cryostat sections. The following observations were made: 1) NPY-immunoreactive (IR) and S P-IR nerve fibers could be clearly identified in both fixed and unfixed sections of this type of tissue. 2) TH-IR nerve fibers could be detected in unfixed tissue if the sections were post-fixed with aldehydes by the use of a two-step fixation process related to a sudden change of pH. However, the outlines of the nerve fibers were sometimes diffuse. 3) Storage of unfixed tissue for periods of up to 2.5 yeart at –80° C did not lead to a decrease in immunoreactivity. 4) Somewhat higher concentrations of primary antibodies had to be used for sections of unfixed tissue than for sections of fixed tissue when the FITC method was used. This waste of antibodies was partly overcome by use of the biotin-streptavidin method. The glyoxylic acid induced catecholamine(CA)-fluorescence method for demonstration of sympathetic nerve fibers was also applied and was found to give optimal results after storage of tissue for up to 2.5 years. The study shows that the use of unfixed rapidly frozen tissue represents a fast and realistic method for the demonstration of neuropeptide immunoreactivity, that it to some extent can be used for the visualization of TH-containing nerve fibers and that it is a suitable method to maintain longterm neuropeptide and TH immunoreactivity as well as long-term CA-fluorescence reaction.  相似文献   

13.
Ding, W.-G., H. Kimura, M. Fujimura and M. Fujimiya. Neuropeptide Y and peptide YY immunoreactivities in the pancreas of various vertebrates. Peptides 18(10) 1523–1529, 1997.—NPY-like immunoreactivity was observed in nerve fibers and endocrine cells in pancreas of all species examined except the eel, which showed no NPY innervation. The density of NPY-positive nerve fibers was higher in mammals than in the lower vertebrates. These nerve fibers were distributed throughout the parenchyma, and were particularly associated with the pancreatic duct and vascular walls. In addition, the density of NPY-positive endocrine cells was found to be higher in lower vertebrates than mammals; in descending order; eel = turtle = chicken > bullfrog > mouse = rat = human > guinea pig = dog. These NPY-positive cells in the eel and certain mammals tended to be localized throughout the islet region, whereas in the turtle and chicken they were mainly scattered in the exocrine region. PYY-immunoreactivity was only present in the pancreatic endocrine cells of all species studied, and localized similarly to NPY. Thus these two peptides may play endocrine or paracrine roles in the regulation of islet hormone secretion in various vertebrate species.  相似文献   

14.
The immunocytochemical location of neuropeptide Y (NPY)-like immunoreactivity (LI) within the neuronal structures of the rat gastrointestinal (GI) tract was investigated with the indirect immunofluorescence method. NPY immunoreactive neurons were found throughout all regions of the GI tract with the largest number in the duodenum. NPY immunoreactive perikarya were mainly located in the submucosal ganglia. NPY labeled processes were extensively seen in the submucosal and myenteric plexuses, smooth muscles, muscularis mucosa, mucosa and surrounding blood vessels. Following 6-hydroxydopamine (6-OHDA) treatment, NPY immunoreactive nerve fibers around blood vessels disappeared completely and the reactive fibers in other regions were reduced in number. NPY immunoreactive nerve cell bodies in the ganglionic plexuses, however, were not affected by 6-OHDA treatment. Serial sections of the coeliac ganglion showed that NPY-LI was present in cell bodies which also displayed tyrosine hydroxylase (TH) immunoreactivity. Our results suggest that NPY is abundantly contained in both adrenergic and non-adrenergic neurons of the gut and may play an important role in the regulation of the GI tract.  相似文献   

15.
The cellular distribution of parvalbumin immunoreactivity in the vestibular peripheral system of mouse, rat, and guinea pig was investigated by light and electron microscopy. Parvalbumin was found in all neurons of the vestibular ganglia of these species but in the sensory epithelia immunoreactivity was restricted to type I hair cells localized exclusively in the central areas. The very intense staining pattern was similar in the cristae ampullares and utricles of all three species but a faint immunoreaction was also detectable in sensory cells of peripheral areas of rat cristae. The parvalbumin-immunoreactive type I sensory cells are connected by nerve fibres of the calyx unit type which are known selectively to contain calretinin.  相似文献   

16.
Immunoreactive neuropeptide Y (NPY) was demonstrated in neuronal elements in the urinary bladder wall of the newborn guinea pig. Numerous intramural ganglia were found lying among the smooth muscle bundles and in the submucosa, and NPY-like immunoreactive nerve cell bodies were demonstrated within all of these ganglia. Nerve fibres containing NPY were also richly distributed in the detrusor muscle, submucosa and around blood vessels. In dissociated cell cultures from newborn guinea pig detrusor muscle, a subpopulation (70-85%) of both mononucleate and binucleate intramural neurones was shown to contain NPY-like immunoreactivity. A low percentage (1-6%) of the intramural bladder neurones contained dopamine-beta-hydroxylase. In conclusion, while some NPY-containing nerve fibres in the wall of the bladder are of sympathetic origin, especially those supplying blood vessels, the results of this present study establish that many of these NPY-containing nerve fibres originate from non-adrenergic cell bodies within the intramural bladder ganglia.  相似文献   

17.
Choroid plexus from rat, guinea-pig, rabbit and pig was investigated by light-microscopic immunohistochemistry and by radioimmunoassay for the presence of neuropeptides. A moderately dense supply of nerve fibers containing neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), respectively, was found around blood vessels and in close relation to the secretory epithelium in both pig and rabbit, while lower densities of nerve fibers were found in rat and guinea-pig. Peptide concentrations ranged from 10-40 pmolequivalents/g (pmoleqv/g) for NPY and 0.5-6 pmoleqv/g for VIP in all four species. Peptide histidine isoleucine (PHI) immunoreactive nerve fibers were present in pig choroid plexus at a lower density than NPY and VIP but with a similar distribution. Low concentrations of substance P (0.3-3 pmoleqv/g) and calcitonin gene-related peptide (0.1-3 pmoleqv/g) were found to a varying degree in choroid plexus tissue from the different species, while immunohistochemical investigation was unable to detect any immunoreactive nerve fibers. NPY was often found to coexist with VIP and PHI in pig choroid plexus, while a lesser amount of nerve fibers showed coexistence of NPY and the noradrenaline synthetizing enzyme, dopamine-beta-hydroxylase. Surgical sympathetic denervation by excision of the superior cervical ganglion in the rabbit abolished NPY-containing nerve fibers, as revealed by immunohistochemistry, but only decreased NPY levels by one third, which may be due to different identity of the peptide being detected by the two techniques. It is concluded that NPY-containing nerve fibers have a dual origin in the choroid plexus and coexist with either noradrenaline or VIP/PHI.  相似文献   

18.
Summary Postnatal development of the innervation of the pineal gland in situ as well as the reinnervation of pineal grafts by tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive nerve fibers were examined using the avidin-biotin-peroxidase immunohistochemical technique. TH-immunoreactive nerve fibers appeared in the pineal gland on the second postnatal day (P2) in both hamsters and gerbils. NPY-immunoreactive nerve fibers first appeared in the pineal gland of gerbils on P2 and in the hamsters on P3. By the seventh postnatal day (P7), the pineal glands of both hamsters and gerbils were richly innervated by TH- and NPY-fibers that appeared as smooth fibers or fibers with sporadic varicosities. By the age of 4 weeks, the innervation of the pineal glands of hamsters and gerbils by TH-and NPY-fibers was fully developed. Abundant TH- and NPY-fibers formed a dense meshwork in the parenchyma of the superficial and deep pineals. The great majority of the fibers bore a large number of varicosities. More NPY-fibers were found in the pineal glands of gerbils than hamsters. NPY fibers were distributed evenly throughout the pineal glands of the gerbil, but they were more often located in the central region of the superficial pineal of the hamster. For the pineal grafts, superficial pineals from neonatal and 4-week-old hamsters were transplanted to different sites in the third cerebral ventricle (infundibular recess, posterior third ventricle) or beneath the renal capsule. The pineal grafts from 4-week-old donors appeared to undergo severe degeneration and eventually disappeared. The pineal grafts from neonatal hamsters, however, successfully survived and became well integrated into their new locations. Abundant TH-and NPY-fibers in the host brain were found surrounding the pineal grafts placed in the third cerebral ventricle, but were only rarely seen entering the parenchyma of the grafts. A few TH-fibers were demonstrated in the renal grafts 4 weeks after transplantation. These studies describe the postnatal development of the innervation of the pineal glands in situ by TH-and NPY-nerve fibers, and demonstrate a lack of reinnervation of cerebroventricular pineal grafts by TH and NPY fibers from adjacent host brain.Portions of the results of this paper were previously reported in abstract form at the 1990 Meeting of The American Association of Anatomists (Anat Rec 226:57A)  相似文献   

19.
A simple method combining indirect immunofluorescence and histochemical techniques was developed in order to demonstrate the presence of both neuropeptide immunoreactivity and acetylcholinesterase activity in the same whole-mount preparation. It was found that the two methods can be combined without interfering with one another and may be viewed and photographed simultaneously. The guinea pig basilar artery was chosen as a model tissue. While vasoactive intestinal polypeptide immunoreactivity and acetylcholinesterase activity were found to occur in the same perivascular nerve fibres, tyrosine hydroxylase, neuropeptide tyrosine and calcitonin gene-related peptide immunoreactivity were present in distinct nerve subpopulations. It is possible using this double staining procedure, to analyse the interrelationship of putative cholinergic nerves with other components of the autonomic and sensory nervous system.  相似文献   

20.
The aim of the present study was to compare in man the innervation pattern and the functional responses to neuronal messengers in medium sized lenticulostriate and branches of the posterior cerebral arteries (PCA). The majority of the nerve fibers found were sympathetic and displayed specific immunoreactivity for tyrosine hydroxylase (TH) and neuropeptide Y (NPY). Only few nerve fibers displayed vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and substance P (SP) immunoreactivity. In both arteries, the contractions induced by noradrenaline (NA), NPY and 5-hydroxytryptamine (5-HT) and the relaxant responses induced by acetylcholine (ACh), VIP and pituitary adenylate cyclase activating peptide-27 (PACAP) as well as CGRP and SP were compared in vitro. In conclusion, there was no major difference in innervation pattern or vasomotor sensitivity (pEC50 and pIC50 values) between the two vessels. However, the general pattern indicates stronger vasomotor responses (Emax and Imax) in the PCA branches as compared to the lenticulostriate arteries which may lend support for the clinical observation of a difference in stroke expression between the two vascular areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号